|
Реклама. ООО ГК "Велунд Сталь Сибирь" ИНН 5405075282 Erid: 2SDnjf1Guop
| |
Марка: ЦП2 |
Класс: Цинковый литейный сплав |
Использование в промышленности: для литья протекторов |
Химический состав в % сплава ЦП1 |
Fe |
|
|
Si |
|
Al |
|
Cu |
|
Pb |
|
Mg |
|
Zn |
|
Sn |
|
Cd |
|
Свойства и характеристики ЦП2: |
Плотность ЦП1, г/см3: 7,1 Потенциал отрицательный, мВ: стационарный = 820; рабочий = 750 Токоотдача, А*ч/кг: теоритическая = 820; фактическая 740 Удельный расход, кг/(А*год): 11,8 |
Механические свойства сплава ЦП2 при Т=20oС |
Прокат |
Размер |
Напр. |
σв(МПа) |
sT (МПа) |
δ5 (%) |
ψ % |
KCU (кДж / м2) |
|
|
|
|
|
|
|
|
Физические свойства сплава ЦП2 |
T (Град) |
E 10- 5 (МПа) |
a 10 6 (1/Град) |
l (Вт/(м·град)) |
r (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
20 |
|
|
|
7,1
|
|
|
Особенности получения цинка ЦП2: марка относится к сплавам системы Zn-Al-Mg-Mn. К промышленным сплавам этой системы относится сплав ЦП2, нашедший широкое применение для приготовления литых протекторов. Приготовление сплава можно осуществлять в тигельных печах с газовым и электрическим обогревом, а также в индукционных печах.
Приготовление сплава ЦП2 значительно усложнено вследствие значительного различия в плотностях, температурах плавления цинка и легирующих компонентов. В процессе приготовления сплава наблюдаются существенные потери легирующих элементов и ухудшается качество цинковых сплавов.
Последовательность и условия введения легирующих элементов при приготовлении сплава ЦП2 имеют важное значение, так как влияют на их потери и качество сплава. Для определения потерь легирующих компонентов и их уменьшения при получении сплава, ЦП2, а также снижения брака литых протекторов по химическому составу были проведены эксперименты по различным технологическим вариантам, отражающим условия введения элементов и особенности технологии приготовления цинковых сплавов. Приготовление сплавов проводили в тигельной электрической печи сопротивления. Расчетное количество вводимых в цинковый расплав алюминия, марганца и магния отвечало ОСТ 5.3072-75 на сплав ЦП2 и составляло, %: А1 0,53-0,6; Мn 0,1-0,31; Mg 0,11-0,31. Легирующие компоненты вводили в цинковый расплав при 460-480 °С из чистых металлов, двойных и более сложных по составу лигатур. Пробы отбирали после введения всех компонентов и отстаивания расплава в течение 15-20 мин.
Данные табл. 42 о содержании легирующих компонентов при приготовлении сплава на основе цинка по различным вариантам свидетельствуют о больших различиях в расчетном (Р) и фактическом (Ф) содержании элементов в сплаве ЦП 2 в зависимости от условий их введения.
Усвоение легирующих компонентов при их введении по вариантам I-IX также различно (рис. 58) и составляет, %: А1 105,2-137,0; Мn 42,5-88,3; Mg 75,0-136,0.
Указанные выше варианты можно разделить на три группы: 1) легирующие компоненты вводятся в расплав в чистом виде по отдельности при получении двойных сплавов на основе цинка (/, II, III); 2) легирующие компоненты вводятся в расплав в чистом виде в различной последовательности при получении сплава ЦП2 (IV, V, VI); 3) легирующие компоненты вводятся в расплав в чистом виде (магний) и из лигатур (алюминий, марганец, магний) при получении сплава ЦП2 (варианты VII, VIII, IX).
Следовательно, введение легирующих компонентов в чистом виде (варианты первой группы) обеспечивает наибольшую степень усвоения алюминия (108,1 %); степень усвоения магния составляет 93,3 %, а марганца 60%. Изменение последовательности введения легирующих компонентов (варианты второй группы) приводит к различной степени усвоения алюминия, магния и марганца, уменьшающейся, как и в вариантах первой группы, от алюминия к марганцу. Превышение фактического содержания элементов в сплавах против расчетных значений (усвоение элементов выше 100%) в ряде вариантов объясняется повышенным угаром цинка. Степень усвоения марганца, несмотря на потери цинка, низка (42,5-77,0%), особенно при его введении вместе с магнием ( VI). Результаты, полученные при сравнении вариантов IV, V и VI (третья группа), показывают, что на потери магния большое влияние оказывает алюминий, вводимый в расплав после магния. Наименьшие потери магния наблюдаются при его введении в конце плавки (IV, V).
Наименьшие потери легирующих компонентов при их введении из чистых металлов будут наблюдаться при следующей очередности загрузки элементов: Al, Mn, Mg. С применением для введения марганца двойных (VII, VIII) и более сложных по составу лигатур (IX) несколько сокращаются потери марганца и повышается степень его усвоения с 42,5 до 88,3 % (IX). Для снижения потерь марганца целесообразно его вводить в цинковый расплав в виде лигатуры А1-Мп (10-20%).
На основании полученных результатов плавку цинкового сплава ЦП2 в тигельных электропечах следует проводить в следующей последовательности: в разогретый до 400-500 °С тигель или плавильную печь загружают 2/3 цинка марки ЦВ1 или ЦВ с содержанием железа 0,001 % и лигатуру А1-Мп, приготовленную на алюминии марки А95 и марганце марки МРО. После расплавления и перегрева расплава до 480-490 °С осуществляют тщательное перемешивание сплава, вводя оставшуюся часть цинка. После этого под уровень расплава вводят с помощью дырчатого колокольчика навеску предварительно нагретого до 120-150 °С магния. Далее при 470-480 °С рафинируют расплав путем введения в него ZnCl2 (NH4C1) в количестве 0,1-0,2% от массы сплава.
В случае производства цинковых сплавов в больших количествах широкое применение находят канальные индукционные печи типа ИЦ20.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
|
|