 |
Реклама. ООО ГК "Велунд Сталь" ИНН 9725035180 Erid: 2SDnjdphxRi
|  |
Марка: ВТ23 |
Класс: Титановый деформируемый сплав |
Использование в промышленности: для изготовления кавитационно стойких изделий; класс по структуре α+β |
Химический состав в % сплава ВТ23 |
Fe |
0,4 - 0,8 |
 |
Cr |
0,8 - 1,4 |
Mo |
1,5 - 2,5 |
V |
4 - 5 |
Ti |
84 - 89,3 |
Al |
4 - 6,3 |
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
ВТ23 труба, лента, проволока, лист, круг ВТ23
Свойства и полезная информация: |
Термообработка: Закалка и старение |
Твердость материала: HB 10 -1 = 255 - 270 МПа |
Механические свойства сплава ВТ23 при Т=20oС |
Прокат |
Размер |
Напр. |
σв(МПа) |
sT (МПа) |
δ5 (%) |
ψ % |
KCU (кДж / м2) |
Лист |
|
|
1100-1200 |
|
10-13 |
|
|
Лист |
|
|
1450-1600 |
|
4-6 |
|
|
Некоторые особенности сварки титана ВТ23: для многокомпонентного сплава ВТ23 и высоколегированного сплава ВТ22 нецелесообразно применять методы сварки с глубоким проплавлением. Их сварные соединения требуют обязательного отжига после сварки и именно в этом состоянии могут быть наиболее успешно применены. В состоянии же после сварки швы сплава ВТ23 малопластичны при всех методах сварки титана без разделки кромок за один проход.
Механические свойства сварных соединений сплава ВТ23 толщиной 3 мм:
Вид сварки |
σв, кгс/мм2 |
ан, кгс*м/см2 |
а0 |
АРДСНп АРДСНп с флюсом типа АНТ-19А ЭЛС |
109 106 107 |
1,8 1,2 1,1 |
18 15 10 |
В связи с чувствительностью а+в-сплавов к термическому циклу сварки и благоприятным влиянием замедленного охлаждения на свойства сварных соединений, можно было ожидать, что электронно-лучевая сварка не найдет применения для изготовления сварных конструкций из сплавов данной группы. Однако это предположение не оправдалось. Вероятно, мелкозернистая структура, образующаяся в процессе термического цикла ЭЛС, а также дисперсность продуктов внутризеренного распада влияют на характер разрушения сварных соединений и уменьшают отрицательное влияние пересыщенности а`-фазы на свойства швов. Известны примеры использования электронного луча при изготовлении конструкций различных размеров и толщин элементов из некоторых двухфазных термических упрочняемых сплавов титана. Считают даже, что ЭЛС сплавов Ti-6А1-4V, Ti-6А1-4V-2Sn и других при толщине свариваемых элементов 40-50 мм экономичнее аргонодуговой и обеспечивает более высокие свойства соединений.
Термическая обработка сварных соединений из титана ВТ23: сварные конструкции из сплава ВТ23 необходимо отжигать при 750°С с охлаждением в печи до 400°С, а затем на воздухе, что позволяет приблизить свойства сварных соединений к свойствам основного металла. Характерным для сварных соединений сплавов критического состава является повышение в результате отжига не только пластических свойств, но и прочности. Значительное улучшение свойств объясняется благоприятным соотношением а- и в-фаз в структуре околошовной зоны после отжига. Сплав становится стабильным и не наблюдается аномального изменения электросопротивления при нагреве.
Целью отжига при сварке титановых сплавов критического состава является не только устранение термических сварочных напряжений, но и получение равновесной смеси с необходимым соотношением а-фазы и в-твердого раствора, достаточно обогащенного стабилизирующими элементами для того, чтобы обеспечить стабильность в-фазы при эксплуатации. Правку и механическую обработку сварных конструкций из этих сплавов следует производить только в отожженном состоянии.
Основное применение нашел высокотемпературный одноступенчатый отжиг при температуре 750° С, выдержка при этой температуре в течение 1-2 ч и медленное охлаждение с печью со скоростью 2-4° в минуту до 350-400° С, далее на воздухе.
Повышение температуры и увеличение длительности отжига в а + в-области сопровождается огрублением внутризеренного строения и ростом размеров а-пластин. Следует отметить необходимость строгой регламентации скорости охлаждения. При увеличении скорости охлаждения от температуры отжига не достигается стабильность структуры и наблюдается эффект закалки. При охлаждении на воздухе происходит частичный распад в-раствора с образованием в-фазы, что вызывает резкое охрупчивание сплава. Уменьшение скорости охлаждения также нежелательно из-за понижения пластичности. Влияние средней скорости печного охлаждения в пределах 0,3-1,4° С/мин в диапазоне 780-350° С исследовано Н. Ф. Аношкинам и др. Снижение средней скорости печного охлаждения с 1,4 до 0,3° С/мин сопровождается повышением прочности на 5-7 кгс/мм2 и понижением пластичности на 10-15%. Это вызвано увеличением количества а-фазы и ее характерным внутризеренным строением.
Таким образом, высоколегированные сплавы критического состава требуют жесткой регламентации скорости печного охлаждения и корректировки температуры отжига с учетом инерционности имеющегося оборудования.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
 |
|