Центральный металлический порталлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   НОВОСТИ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ   

Марки стали и сплавы -> Титан сплав и марки

Титан сплав и марки

Титановая губка
ТГ-100 ТГ-110 ТГ-120 ТГ-130 ТГ-150
ТГ-90 ТГ-Тв      

 

Титан технический
ВТ1-0 ВТ1-00 ВТ1-1    

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Титан труба, лента, проволока, лист, круг Титан

 

Титановый литейный сплав
ВТ14Л ВТ1Л ВТ20Л ВТ21Л ВТ3-1Л
ВТ5Л ВТ6Л ВТ9Л    

 

Титановый деформируемый сплав
АТ-6 ВТ14 ВТ15 ВТ16 ВТ20
ВТ22 ВТ23 ВТ3-1 ВТ5 ВТ5-1
ВТ6 ВТ6С ВТ9 ОТ4 ОТ4-0
ОТ4-1 ПТ3В ПТ7М ТС6  

 

Свойства и полезная информация:

Цвет: серебристо-белый Плотность: 4,54 г/см³
Температура плавления: 1668 °С
Температура кипения: 3260 °С
Теплопроводность: 21.9 Вт/(м·К) Атомный номер: 22
Атомная масса: 47,9 Удельная теплота плавления: 358 кДж/кг
Удельная теплоемкость (при 20 °С): 0,54 кДж/(кг.°С) Модуль упругости: 112 ГПа

 

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим восстановлением из четыреххлористого титана металлическим магнием. Полученная при этом титановая губка маркируется по твердости специально выплавленных из нее образцов.

Полученный в результате последовательного дробления губки, прессования, спекания и переплавки брикетов технический титан маркируется в зависимости от содержания примесей.

Механические свойства титана в большой степени зависят от содержания примесей, особенно Н, О, N и С, образующих с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Небольшое содержание кислорода, азота, углерода повышает твердость и прочность, но при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшается свариваемость, способность к пайке и штампуемость. Поэтому со-

Отличительными особенностями титана являются высокие механические свойства, небольшая плотность и поэтому высокая удельная прочность при 20—25 °С и криогенных температурах, хорошая коррозионная стойкость.

Держание каждой из этих примесей ограничивается ~0,02—0,06 %. Аналогично, но в меньшей степени, на свойства влияют железо и кремний. Особо вредная примесь в титане и однофазных а-сплавах титана - водород. При наличии водорода по границам зерен выделяются тонкие хрупкие пластины гидридной фазы, вызывая значительную хрупкость. Водородная хрупкость наиболее опасна в сварных конструкциях из-за наличия в них внутренних напряжений. Допустимое содержание водорода в техническом титане и однофазных сплавах находится в пределах 0,008— 0,012 %.

Наиболее чистый иодидный титан получают методом термической диссоциации из четырехиодистого титана или методом зонной плавки.

Модуль упругости титана почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Несмотря на высокую температуру плавления, чистый титан не обладает жаропрочностью. Он склонен к ползучести даже при 20—25 °С. Кислород, азот, а также пластическая деформация повышают сопротивленце ползучести.

Титан обладает высокими прочностью и удельной прочностью в условиях глубокого холода.

Пластическая деформация значительно повышает прочность титана. Для снятия наклепа проводят рекристаллизационный отжиг. Температура рекристаллизации титана понижается с 600 до 500 °С при увеличении степени предшествующей деформации с 10 до 60 %, после чего не меняется. Наилучшее сочетание механических свойств титан имеет после отжига при 650-750 °С.

При повышении температуры титан активно поглощает газы: начиная с 50-70 °С - водород, свыше 400-500 °С - кислород, с 600-700 °С - азот, окись углерода и углекислый газ. Высокая химическая активность расплавленного титана вызывает необходимость применения при плавке и ду-

говой сварке вакуума или атмосферы инертных газов. Вместе с тем благодаря способности к газопоглощению титан нашел применение в радио- и электронной промышленности в качестве геттерного материала.

Технический титан хорошо обрабатывается давлением при 20-25 °С и повышенных температурах. Из него изготовляют все виды прессованного и катаного полуфабриката (листы, трубы, проволоку, поковки и др.). Ковку проводят при температуре 1000-750 °С, горячую прокатку - на 100 °С ниже температуры ковки. Горячей прокаткой получают листы толщиной более 6 мм, листы меньшей толщины изготовляют холодной прокаткой или с нагревом до 650-700 °С. Температура прессования 950-1000 °С. Титан хорошо сваривается аргонодуговой и всеми видами контактной сварки. Сварной шов обладает хорошим сочетанием прочности и пластичности. Прочность шва составляет 90 % прочности основного металла.

Титан плохо обрабатывается резанием, налипает на инструмент, что приводит к его быстрому износу. Для обработки титана требуется инструмент из быстрорежущей стали и твердых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. Недостатком титана является также низкая антифрикционность.

Титановые сплавы. Достоинством титановых сплавов по сравнению с титаном являются более высокие прочность и жаропрочность при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности.

По влиянию на полиморфизм титана все легирующие элементы подразделяются на три группы: а-стабилизаторы, в-стабилизаторы и нейтральные элементы.

а-стабилизаторы (А1, О, N) повышают температуру полиморфного превращения, расширяя область твердых растворов на основе Tia. Практическое значение для легирования титана имеет только алюминий, так как остальные вызывают снижение пластичности и вязкости титановых сплавов. Алюминий уменьшает плотность и склонность к водородной хрупкости, повышает прочность, жаропрочность, модуль упругости титановых сплавов.

Р-стабилизаторы снижают температуру полиморфного превращения титана, расширяя область твердых растворов на основе Tig. Они образуют с титаном диаграммы состояния двух типов.

Изоморфные в-стабилизаторы Mo, V, Та, Nb, имеющие, как и Ti, кристаллическую решетку объемно-центрированного куба, неограниченно растворяются в Ti. Сг, Мп, Fe, Ni, W, Си и другие образуют с титаном диаграммы состояния с эвтектоидным распадом. В некоторых сплавах (Ti—Mn, Ti—Cr, Ti—Fe) при охлаждении в условиях, отличающихся от равновесных, эвтектоидного распада не происходит, а превращение идет по штриховой линии.

Большинство B-стабилизаторов, особенно V, Мо, Мп, Сг, повышают прочность при 20—25 °С и отрицательных температурах, жаропрочность и термическую стабильность титановых сплавов, несколько снижая их пластичность.

Нейтральные элементы (Sn, Zr, Hf) мало влияют на температуру полиморфного превращения. Наибольшее практическое значение имеют олово и цирконий. Олово упрочняет титановые сплавы без заметного снижения пластичности, повышает жаропрочность; цирконий увеличивает предел ползучести и длительную прочность.

По технологии изготовления титановые сплавы подразделяются на деформируемые, литейные и порошковые, по механическим свойствам — на сплавы нормальной прочности, высокопрочные, жаропрочные, повышенной пластичности. По способности упрочняться с помощью термической обработки они делятся на упрочняемые и неупрочняемые термической обработкой; по структуре в отожженном состоянии они классифицируются на а-, псевдо-а, а + р, псевдо-р и р-сплавы.

Сплавы с а-структурой. К этой группе сплавов относят и технический титан. Это сплавы нормальной прочности при 20—25 °С, обладающие высоким сопротивлением разрушению при повышенных (350—500 °С) и криогенных температурах. Сплавы имеют высокую термическую стабильность свойств и обладают отличной свариваемостью. Они свариваются аргонодуговой, всеми видами контактной и электронно-лучевой сварки. При этом прочность сварного шва составляет 90 % прочности основного сплава. Обрабатываемость резанием удовлетворительная.

а-сплавы не упрочняются термической обработкой и применяются в отожженном состоянии. Сплавы с цирконием наиболее технологичны, но это самые дорогие из а-сплавов. В горячем состоянии сплавы куют, прокатывают и штампуют. Из сплава ПТ7М изготовляют горяче- и холоднокатаные трубы. Сплавы поставляют в виде прутков сортового проката, поковок, труб, проволоки. Они предназначены для изготовления деталей, работающих в широком диапазоне температур: от криогенных до 500 °С.

Псевдо-а-сплавы имеют преимущественно а-структуру и, вследствие дополнительного легирования B-стабиливаторами (Мп, V, Nb, Mo),— 1—5 % Р-фазы. Благодаря наличию р-фазы они обладают хорошей технологической пластичностью при сохранении достоинств а-сплавов. Сплавы с низким содержанием алюминия (2—3 %) обрабатываются давлением в холодном состоянии и только при изготовлении деталей сложной формы подогреваются до 500—700 °С (ОТ4, ОТ4-1). Сплавы с большим содержанием алюминия при обработке давлением требуют подогрева до 600—800 °С. На жаропрочность сплавов помимо алюминия благоприятно влияют цирконий и кремний. Цирконий способствует увеличению растворимости p-стабилизаторов в а-фазе и повышает температуру рекристаллизации. Кремний повышает жаропрочность вследствие образования тонкодисперсных силицидов, трудно растворимых в а-фазе. Поэтому псевдо-а-сплавы с повышенным содержанием алюминия (7—8 %), легированные Zr, V, Mo, Nb, Si, используются в изделиях, работающих при наиболее высоких температурах.

Недостатком этих сплавов является склонность к водородной хрупкости. Водород мало растворим в а-фазе и присутствует в структуре в виде гидридной фазы, снижающей пластичность, особенно при медленном нагружении, и вязкость сплавов. Допустимое содержание водорода находится в пределах 0,01 — 0,005 %.

Двухфазные (а + Р)-сплавы. Физические свойства сплавов приведены. Сплавы легированы алюминием и p-стабилизаторами. Алюминий значительно упрочняет а-фазу при 20—25 °С и повышенных температурах, увеличивает термическую стабильность Р-фазы, снижает плотность (а + Р)-сплавов, что позволяет удерживать ее на уровне титана, несмотря на присутствие элементов высокой плотности V, Mo, Сг, Fe, Nb. Наибольшее упрочнение достигается при легировании титана эвтектоидообразующими B-стабилизаторами Fe, Сг, Мn и изоморфными Mo, V, Nb стабилизаторами. Ванадий и ниобий упрочняют сплавы слабее других, но и меньше снижают пластичность. Двухфазные сплавы упрочняются с помощью термической обработки — закалки и старения. В отожженном и закаленном состояниях они имеют хорошую пластичность, а после старения — высокую прочность и жаропрочность. Чем больше B-фазы содержится в структуре сплава, тем он прочнее в отожженном состоянии и сильнее упрочняется при термической обработке.

По структуре после закалки двухфазные сплавы подразделяют на два класса: мартенситный и переходный.

Сплавы мартенситного класса менее легированы и в равновесном состоянии содержат сравнительно немного Р-фазы (5—25 %). В результате закалки образуется структура мартенсита а (или а" — в более легированных сплавах). К этому классу относятся высокопрочные сплавы ВТ6, ВТ14, ВТ16 и жаропрочные сплавы ВТ8, ВТ9, ВТЗ-1,

Сплавы переходного класса содержат больше легирующих элементов и соответственно больше B-фазы (25— 50%) в равновесной структуре, чем сплавы мартенситного класса. Структура этих сплавов чувствительна к колебаниям химического состава и режимам термической обработки. Так, после закалки в этих сплавах можно получить однофазную структуру переохлажденной B-фазы или структуру, состоящую из этой фазы и мартенсита а". Наличие большого количества B-фазы обеспечивает сплавам переходного класса самую высокую прочность среди (а + B)-сплавов. Например, сплав ВТ22 (50 % B-фазы) имеет после отжига такое же временное сопротивление, как сплав ВТ6 после закалки и старения.

Двухфазные сплавы удовлетворительно обрабатываются резанием и свариваются. После сварки требуется отжиг для повышения пластичности сварного шва. Они менее склонны к водородной хрупкости, чем а- и псевдо-а-сплавы, так как водород обладает большей растворимостью в B-фазе. Двухфазные сплавы куются, штампуются и прокапываются легче, чем сплавы с а-структурой. Они поставляются в виде поковок, штамповок, прутков, листов, ленты.

Однофазные B-сплавы не имеют промышленного значения, так как для получения устойчивой B-структуры сплавы должны быть легированы большим количеством изоморфных B-стабилизаторов (V, Mo, Nb, Та) — дорогих, дефицитных и обладающих высокой плотностью.

Псевдо-B-сплавы. Это высоколегированные в основном B-стабилизаторами сплавы. Суммарное количество легирующих элементов в них, как правило, превышает 20 % . Наиболее часто их легируют Mo, V, Сг, реже Fe, Zr, Sn. Алюминий присутствует почти во всех сплавах в небольшом количестве (~ 3%). В равновесном состоянии они имеют в основном p-структуру и небольшое количество а-фазы.

После закалки имеют структуру переохлажденной метастабильной B-фазы, обеспечивающей высокую пластичность сплавам и хорошую обрабатываемость давлением. При старении сплавов временное сопротивление увеличивается приблизительно в 1,5 раза и достигает 1300-1800 МПа. Плотность сплавов находится в интервале 4,9—5,1 т/м3, а удельная прочность, самая высокая среди титановых сплавов, превышает 30 км. Сплавы обладают низкой склонностью к водородной хрупкости, но чувствительны к примесям — кислороду и углероду, вызывающим снижение пластичности и вязкости; сварные швы имеют пониженную пластичность; термическая стабильность низкая. Наибольшее распространение в промышленности получил сплав ВТ15 (~3 % А1, ~8% Мо и 11 % Сг). Этот сплав выпускается в виде полос, листов, прутков, поковок и рекомендуется для длительной работы при температуре до 350 оС.

Литейные титановые сплавы. Небольшой температурный интервал кристаллизации обеспечивает высокую жидкотекучесть и плотность отливок из титановых сплавов. Они отличаются малой склонностью к образованию горячих трещин; линейная усадка 1 %; объемная усадка 3 %.

Плавку и заливку сплавов на основе титана осуществляют в среде нейтральных газов или в вакууме в связи с их высокой химической активностью при нагреве.

Отливки изготовляют методом фасонного литья в чугунные, стальные и специальные формы. Для получения высококачественных сложных титановых отливок необходим комплексный подход к выбору оптимальных режимов литья как при плавке и заливке металла, так и при формировании отливки в литейной форме.

Литейные сплавы обладают более низкими механическими свойствами, чем соответствующие деформируемые. Упрочняющая термическая обработка не применяется, так как резко снижает пластичность сплавов.

Порошковые титановые сплавы. Высокая стоимость изготовления и трудность механической обработки сплавов на основе титана являются серьезным препятствием на пути их широкого применения. Методы порошковой технологии позволяют повысить коэффициент использования металла путем уменьшения отходов при механической обработке и открывают потенциальные возможности получения готовых деталей для конструкций летательных аппаратов и двигателей.

Получение порошков из сплавов на основе титана является сложной проблемой вследствие вредного влияния различных примесей. Высокая химическая активность расплавленного титана исключает применение большинства огнеупоров в качестве материала для тиглей.

Использование современных методов получения легированных порошков дуговой плавкой с вращающимся анодом и неподвижным вольфрамовым катодом, электроплазменной плавкой либо распылением в вакууме и других позволяет исключить загрязнения. Повышение качества полуфабрикатов и готовых деталей сложных форм может быть достигнуто в результате использования новых прогрессивных методов, таких, как горячее компактирование гранул, горячее изостатическое прессование легированных порошков (ГИП) с последующим спеканием в вакуума и др.

Несмотря на определенные сложности и недостатки (пористость, наличие неметаллических включений и примесей), ухудшающих качество изделий из порошковых сплавов на основе титана, преимущество порошковой металлургии, особенно в ее новом варианте, очевидно.

Для изготовления деталей методами порошковой технологии используют сплавы ВТ5, ВТ5-1, ОТ4, ВТЗ-1 и др. Из зарубежных сплавов весьма перспективными являются сплав Ti-6A1-4V и особенно Корона-5, обладающий высокой вязкостью разрушения.

Применение титановых сплавов.

В авиастроении, ракетостроении — каркасные детали, обшивка, топливные баки, детали реактивных двигателей, диски и лопатки компрессоров, детали воздухозаборника, детали корпусов ракетных двигателей второй и третьей ступени и т. д.

В судостроении — обшивка корпусов судов и подводных лодок, сварные трубы, гребные винты, детали насосов и др.

В химической промышленности: реакторы для агрессивных сред, насосы, змеевики, центрифуги и др.

В гальванотехнике: ванны для хромирования, анодные корзины, теплообменники, трубопроводы, подвески и др.

В газовой и нефтяной промышленности: фильтры, седла клапанов, резервуары, отстойники и др.

В криогенной технике: детали холодильников, насосов компрессоров, теплообменники и др.

В пищевой промышленности: сепараторы, холодильники, емкости для продуктов, цистерны и др.

В медицинской промышленности: инструмент, наружные и внутренние протезы, внутрикостные фиксаторы, зажимы и др.

Также статьи по свойствам титана: размерная стабильность титановых сплавов при закалке и охлаждении.

 

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
  ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
  Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
  σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
  σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
  J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
  n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
  E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
  C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
  а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
  σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

21:27 Набор для обвязки стальной лентой Combo St19 Plus

13:17 Плиты перекрытия многопустотные 1 ПБ 20-15-16

13:16 Плиты перекрытия многопустотные 1 ПБ 19-15-16

13:14 Плиты перекрытия многопустотные 1 ПБ 18-15-16

13:12 Плиты перекрытия многопустотные 1 ПБ 17-15-16

13:11 Плиты перекрытия многопустотные 1 ПБ 16-15-16

12:08 Плита перекрытия ПК 68-15-8 АтVт-1

12:06 Плита перекрытия ПК 70-15-8 АтVт-1

12:04 Плита перекрытия сплошная ИИ 04-4 ПК 8-28-9

12:03 Плита перекрытия сплошная ИИ 04-4 ПК 8-58-8

НОВОСТИ

14 Августа 2022 17:43
Современные судоверфи в работе (подборка видео)

15 Августа 2022 11:32
Американский экспорт черного лома в июне вырос на 1,1%

15 Августа 2022 10:05
Погрузка экспортных грузов в адрес портов Азово-Черноморского бассейна увеличилась на 2,5%

15 Августа 2022 09:39
”Металлоинвест” завершил модернизацию склада нефтепродуктов ”Лебединского ГОКа”

15 Августа 2022 08:16
АО ”Хиагда” начала подготовку к строительству инфраструктуры месторождения Дыбрынское

15 Августа 2022 07:21
На ”ЕВРАЗ ЗСМК” запустили в производство новый двутавровый профиль для строительства

НОВЫЕ СТАТЬИ

Когтевой вакуумный насос в промышленности

Видеоглазки для входных дверей

Постельное белье для больниц

Культиваторы для дачи

Виртуальные номера для компании

Особенности термотрансферных принтеров

Элитные ручки для письма

Распространенные виды современных диванов

Производство гибкой упаковки

Особенности покупки б/у оборудования для автосервиса

Торговое оборудование и мебель для магазинов

Забор из блоков - декоративный камень

Септик Юнилос Астра для монтажа автономной канализации

Арматура – незаменимый материал для каждого строительства

Брендинговое агентство в Москве для строительного сектора

Принцип работы автоматического выключателя

Распространенные медицинские расходные материалы

Алюминий литейный

ПАРТНЕРЫ

Рекомендуем приобрести металлопрокат в СПб от компании РДМ.

 ГЛАВНАЯ   НОВОСТИ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ   

Top.Mail.Ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2021 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.