Центральный металлический порталлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   НОВОСТИ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ   

Марки стали и сплавы -> Сталь конструкционная -> Сталь конструкционная 20ХГНМ

Сталь конструкционная 20ХГНМ

Реклама. ООО ГК "Велунд Сталь СЗ" ИНН 7813653802 Erid: 2SDnjeTme6H
Марка: 20ХГНМ Класс: Сталь конструкционная легированная
Использование в промышленности: Нет данных о применении

 

Химический состав в % стали 20ХГНМ
C 0,18 - 0,23 Диаграмма химического состава стали 20ХГНМ
Si 0,17 - 0,37
Mn 0,7 - 1,1
Ni 0,4 - 0,7
S до 0,035
P до 0,035
Cr 0,4 - 0,7
Mo 0,15 - 0,25
Fe ~97

 

Зарубежные аналоги марки стали 20ХГНМ
США 8617, 8620, 8620H, 8620RH, G86170, G86200, H86170, H86200, J11442, K12147
Германия 1.6523, 21NiCrMo2, 21NiCrMo2-2
Япония SNCM220, SNCM220H
Франция 20NCD2, 20NiCrMo2, 22NCD2
Англия 20NiCrMo2-2, 805H20, 805M20, 806M20
Евросоюз 1.6523, 20MoCr2-2, 20NiCrMo2, 20NiCrMo2-2, 20NiCrMo2KD
Италия 20NiCrMo2
Испания 20NiCrMo2, 20NiCrMo2-2, 20NiCrMo3-1
Китай 20CrNiMo, 20CrNiMoH, G20CrNiMo
Швеция 2506
Польша 20HNM, 20HNMA
Финляндия 21NiCrMo2
Австралия 8617, 8617H, 8620, 8620H
Юж.Корея SNCM220, SNCM220H

 

Свойства и полезная информация:
Термообработка: Закалка 860oC, масло, Отпуск 150 - 180oC, воздух,

 

Механические свойства стали 20ХГНМ при Т=20oС
Прокат Размер Напр. σв(МПа) sT (МПа) δ5 (%) ψ % KCU (кДж / м2)
      1180-1570 930 7   590

 

Особенности электрошлаковой сварки стали марки 20ХГНМ (и подобных): для сварки среднелегированных сталей с низкой стойкостью против надрывов необходимо применять электроды с возможно более низкой температурой плавления. «Залечивание» несплошностей основного металла жидкотекучим металлом шва может в значительной мере ослабить или даже предупредить (при аустенитном металле шва) образование трещин в соединениях (табл. 9.24). Для уменьшения вероятности возникновения надрывов сварку следует выполнять на повышенном напряжении.

стей основного металла жидкотекучим металлом шва может в значительной мере ослабить или даже предупредить (при аустенитном металле шва) образование трещин в соединениях (табл. 9.24). Для уменьшения вероятности возникновения надрывов сварку следует выполнять на повышенном напряжении.

Зона термического влияния в среднелегированных сталях в значительно большей степени, чем в низколегированных, подвержена образованию холодных трещин. Возникают они при повышенных жесткости сварных соединений и скорости их охлаждения (см. пп. 2.4 и 9.2). Для предупреждения холодных трещин в соединениях из среднелегированных сталей начальный участок шва или весь стык предварительно подогревают до 423-623 К (150- 350° С) и осуществляют высокий отпуск соединения непосредственно после окончания сварки. При сварке кольцевых швов из среднелегированных сталей холодные трещины могут образоваться не только на замыкающем участке, где действуют наиболее высокие временные напряжения растяжения, но и на рабочей части швов, если их выполняют на низкой погонной энергии. В этих случаях участок замыкания предварительно подогревают, а сварку ведут на повышенной погонной энергии. Особо жесткие конструкции нагревают перед сваркой в печи до 723-773 К (450-500° С) и непосредственно после окончания сварки, не позволяя им охладиться ниже температуры окончания бейнитного превращения, подвергают высокому отпуску для снятия сварочных напряжений.

Рассмотрим особенности электрошлаковой сварки среднелегированных сталей, связанные с процессами, протекающими в металле шва.

В отличие от основного металла, подвергающегося для получения высокой прочности и вязкости предварительной сложной металлургической, деформационной и термической обработке, металл шва испытывает только последующую нормализацию (закалку) и отпуск, иногда только отпуск. Вследствие этого обеспечение свойств металла шва, равноценных с основным металлом, в ряде случаев представляет сложную задачу.

Крупнокристаллическая столбчатая структура легированного металла шва при электрошлаковой сварке характеризуется ярко выраженной структурной неоднородностью, обусловленной химической неоднородностью, развивающейся в процессе кристаллизации шва. Обогащение межкристаллитных границ легирующими элементами может быть весьма значительным. В табл. 9.25 на основании экспериментальных данных, полученных микрорентгеноспектральным анализом, показана химическая микронеоднородность шва на некоторых среднелегированных сталях.

С увеличением содержания легирующих элементов повышается устойчивость аустенита, поэтому при охлаждении он распадается у межкристаллитных границ при более низкой температуре и в меньшей степени подвергается отпуску, чем в теле зерна. Последующая закалка с отпуском не устраняет полностью химической неоднородности и не может исключить ее влияния на ударную вязкость металла шва. Последняя зависит также от ширины ликвационных прослоек и размеров кристаллитов, которые при электрошлаковой сварке в 4-10 раз больше чем при дуговой или электронно-лучевой. Поэтому даже после закалки (нормализации) с отпуском не всегда удается поднять ударную вязкость высокопрочного металла шва до уровня основного металла. В среднелегированных сталях повышенной прочности в большинстве случаев перекристаллизация восстанавливает ударную вязкость металла швов до требуемого уровня. Представление о типичных структуре и свойствах металла шва дают табл. 9.26 и рис. 9.19.

Для повышения ударной вязкости необходимо выбирать оптимальное легирование металла шва или прибегать к специальным мерам. Весьма эффективны, например, ковка сварных соединений

или применение чистых по вредным примесям и газам основного и присадочного материалов. Так, например, ударная вязкость металла шва в закаленных соединениях из стали 35ХН3МФА, сваренных проволоками аналогичного состава, возрастает после ковки от 0,52 МДж/м2 (5,2 кгсм/см2) до 1,34 МДж/м2 (13,4 кгс х м/см2). На стали 25ХНЗМФ ударная вязкость закаленного металла шва составляет 0,89 МДж/м2 (8,9 кгс м/см2). Применение стали и присадочных материалов после электрошлакового переплава повышает ударную вязкость металла шва до 1,56 МДж/м2 (15,6 кгс.м/см2), а после дополнительной ковки - до 2,2 МДж/м2 (22 кгс.м/см2).

Задача получения требуемой ударной вязкости металла шва, в особенности при низких температурах, усложняется в тех случаях, когда невозможны нормализация или закалка сварного соединения. Для металла шва, не подвергнутого перекристаллизации и сохранившего первичную крупнокристаллическую столбчатую структуру, особенно важна благоприятная вторичная структура - высокая дисперсность частиц второй фазы и равномерность их распределения, отсутствие видманштеттовой структуры и ферритных оторочек по границам кристаллитов, чистота границ зерен и т. д. Получение такой структуры путем выбора рационального легирования шва дает заметное повышение его хладостойкости в состоянии после отпуска. Металл шва, например, типа ХГН и ХГНМ имеет низкую ударную вязкость в состоянии после отпуска уже при 253-243 К (-20 -30° С). Повышение содержания никеля, марганца или хрома до 1,8-3% в металле швов типа ХГН2М, Х2ГНМ, Х2Г2М позволяет получить требуемую его ударную вязкость при 233-213 К (-40 -60° С).

Важным преимуществом электрошлаковой сварки является возможность в больших пределах изменять ширину шва и таким образом увеличивать долю основного металла в металле швов и стойкость их против кристаллизационных трещин. Благодаря последнему обстоятельству при сварке среднелегированных сталей удается повышать содержание в шве углерода и легирующих элементов практически до уровня основного металла и получать равнопрочные соединения. При выборе присадочных материалов и режимов сварки необходимо учитывать, что с увеличением содержания углерода, серы и никеля технологическая прочность металла шва понижается. Практически не оказывает на нее влияния кремний (до 1%), хром (до 4%) и молибден (до 0,5%). Введение марганца в количестве 0,5-1,5% обычно повышает стойкость средне-легированного металла шва против кристаллизационных трещин (В. М. Семенов).

 

 

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
  ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
  Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
  σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
  σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
  J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
  n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
  E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
  C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
  а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
  σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Добавить объявление Добавить прайс
Реклама. ООО "Фокс Металл". Erid: 2SDnjckWYek
Реклама. ООО "НТЦ "АПОГЕЙ ЦФО" Erid:2SDnjcgDKi4

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

14:18 Поковка стальная 7Х3 ГОСТ 8479-70 круглая

14:18 Поковка стальная 09Г2С круглая

14:17 Поковка стальная сталь 50 ГОСТ 8479-70 круглая

13:15 Поковка стальная 9Х2 ОСТ 108.030.113-87 круглая

12:46 Поковка стальная 15Х2М2ФБС ГОСТ 1133-71 круглая

12:20 Поковка стальная 30ХГСА ГОСТ 8479-70 круглая

12:05 Поковка стальная Р18 ГОСТ 7062-79 круглая

11:53 Поковка стальная 4Х5В2ФС круглая

11:52 Поковка стальная 15Х5 ГОСТ 1133-71 круглая

11:50 Поковка стальная У8 ГОСТ 7062-79 круглая

НОВОСТИ

19 Мая 2025 17:55
Самодельное приспособление для резки труб болгаркой

19 Мая 2025 17:09
Добыча железной руды в Перу за три месяца снизилась на 0,8%

19 Мая 2025 16:14
”РУСАЛу” рекомендовали не выплачивать дивиденды

19 Мая 2025 15:57
Китайская угледобыча в апреле выросла на 3,8% год к году

19 Мая 2025 14:34
Перевозки метизов в контейнерах на ПривЖД за 4 месяца выросли в два раза

19 Мая 2025 13:44
Пакистан в апреле увеличил импорт черного лома на 1,7%

НОВЫЕ СТАТЬИ

Меняется ли КПП при смене юридического адреса

Что такое ПВХ: характеристики и особенности материала

Можно ли использовать силикатный блок без отделки?

Металлические бочки для промышленного хранения и транспортировки

Электромобили: как выбрать и на что обратить внимание

Заборы из металлического штакетника и его преимущества

Решетчатый прессованный и сварной настил: особенности и области применения

Услуги по лицензированию скважины

Как выбрать надежные строительные материалы из стали: обзор современных решений

Всё об аренде автокранов: какие модели доступны и где их применяют

Контейнерные АЗС: от производства до запуска

Как выбрать этикетировочный станок под свои задачи

Как выбрать лазерную сварку под свои задачи

Интернет для юр лиц — это не просто связь, а бизнес-инструмент

Почему пресс кривошипный КД до сих пор незаменим на производстве

Некоторые аспекты применения подъемника в условиях стройплощадки

Строительство железной дороги начато в Чернобыльской зоне

Алюминий литейный

ПАРТНЕРЫ

Рекомендуем приобрести металлопрокат в СПб от компании РДМ.

 ГЛАВНАЯ   НОВОСТИ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ   

Top.Mail.Ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2025 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала. (1)