 |
Реклама. ООО ГК "Велунд Сталь". ИНН 9725035180 Erid: Kra23jSgK
|  |
Марка: 12ХН3А (заменители: 12ХН2, 20ХН3А, 25ХГТ, 12Х2Н4А, 20ХНР) Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006, ГОСТ 10702-78. Калиброванный пруток: ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73, ГОСТ 10702-78. Шлифованный пруток и серебрянка: ГОСТ 14955-77. Полоса: ГОСТ 103-2006 . Поковки и кованный заготовки: ГОСТ 1133-71. Трубы : ГОСТ 21729-76, ГОСТ 8734-75, ГОСТ 9567-75. Класс: Сталь конструкционная легированная Использование в промышленности: шестерни, валы, червяки, кулачковые муфты, поршневые пальцы и другие цементуемые детали, к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок или при отрицательных температурах до -100 °С .
|
Химический состав в % стали 12ХН3А |
C |
0,09 - 0,16 |
 |
Si |
0,17 - 0,37 |
Mn |
0,3 - 0,6 |
Ni |
2,75 - 3,15 |
S |
до 0,025 |
P |
до 0,025 |
Cr |
0,6 - 0,9 |
Cu |
до 0,3 |
Fe |
~95 |
Зарубежные аналоги марки стали 12ХН3А |
США |
3415 |
Германия |
1.5732, 12Ni14, 14NiCr10, 14NiCr14 |
Япония |
SNC815, SNC815H |
Франция |
10NC11, 14NC11 |
Англия |
655M13 |
Испания |
15NiCr11 |
Болгария |
12ChN3A |
Венгрия |
BNC2 |
Польша |
12HN3A |
Румыния |
13CrNi30q |
Чехия |
16420 |
Свойства и полезная информация: |
Удельный вес: 7850 кг/м3 Температура ковки, °С: начала 1220, конца 800. Сечения до 100 мм охлаждаются на воздухе, 101-300 мм в яме. Термообработка: Закалка и отпуск Твердость материала: HB 10 -1 = 217 МПа Температура критических точек: Ac1 = 715 , Ac3(Acm) = 773 , Ar3(Arcm) = 726 , Ar1 = 659 , Mn = 380 Обрабатываемость резанием: в горячекатанном состоянии при HB 183-187, К υ тв. спл=1,26 и Кυ б.ст=0,95 Свариваемость материала: ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом. Флокеночувствительность: чувствительна. Склонность к отпускной хрупкости: склонна. |
Механические свойства заготовки стали 12ХН3А диаметром 70 мм в зависимости от температуры отпуска |
Температура отпуска, °С |
σ0,2 (МПа) |
σв(МПа) |
δ5 (%) |
ψ % |
KCU (Дж / см2) |
HB |
Закалка 800 °С, масло
|
200 300 400 500 600
|
1270 1130 1080 930 670 |
1370 1270 1200 1030 730
|
12 13 14 19 24 |
60 68 68 70 75
|
98 78 83 118 167
|
400 380 375 280 230
|
Механические свойства стали 12ХН3А в зависимости от сечения
|
Сечение, мм |
σ0,2 (МПа) |
σв(МПа) |
δ4 (%) |
ψ % |
KCU (Дж / см2) |
HRCЭ
|
Ложная цементация 910 °С, 9 ч. Закалка 810 °С, масло. Отпуск 200 °С, на воздухе |
10 15 20 25
|
1080 780 730 640
|
1220 980 880 830
|
13 16 16 20 |
60 65 70 70 |
157 152 165 192
|
35 32 30 28
|
Механические свойства образцов стали 12ХН3А диаметром 28-50 мм при повышенных температурах |
Температура испытаний, °С |
σ0,2 (МПа) |
σв(МПа) |
δ5 (%) |
ψ % |
KCU (Дж / см2) |
Отжиг 880-900 °С. Закалка 860 °С, масло. Отпуск 600 °С, 3 ч |
20 200 300 400 500 550
|
540 520 500 430 390 240
|
670 630 630 530 410 260
|
21 20 12 20 19 21 |
75 74 70 75 86 82 |
274 216 211 181 142 -
|
Механические свойства прутка стали 12ХН3А |
ГОСТ |
Состояние поставки, режим термообработки |
Сечение, мм |
σ0,2 (МПа)
|
σв(МПа) |
δ5 (%) |
ψ % |
KCU (Дж / см2) |
НВ, не более |
ГОСТ 4543-71
|
Закалка 860 °С, вода или масло. Закалка 760-810 °С, вода или масло. Отпуск 180 °С, воздух или масло
|
15
|
685
|
930
|
11
|
55
|
88 |
-
|
|
Цементация 920-950 °С. Закалка 800-820 °С, масло. Отпуск 160-200 °С, воздух |
60
|
830 |
980 |
12
|
55
|
118 |
Поверхности (59-64), сердцевины 303
|
100
|
690 |
830
|
10
|
50
|
78
|
Поверхности (57-63), сердцевины 250
|
Ударная вязкость прутков стали 12ХН3А сечением 10 мм KCU, (Дж/см2) |
Т= +20 °С
|
Т= -40 °С |
Термообработка |
127 42 |
103 14
|
Закалка 850 °С, масло. Отпуск 200 °С, 1 ч HRCэ 37 Газвая цементация 910 °С, 3 ч. Закалка 810 °С, масло. Отпуск 200 °С, 1 ч HRCэ 58 |
Механические свойства стали 12ХН3А при повышенных температурах |
Температура испытаний, °С |
σ0,2 (МПа) |
σв(МПа) |
δ5 (%) |
ψ % |
KCU (кДж / м2) |
Образец диаметром 10 мм и длиной 50 мм, кованный и отожженный. Скорость деформированя 5 мм/мин. Скорость деформации 0,002 1/с
|
700 800 900 1000 1100 1200 1250
|
70 29 27 23 23 12 10
|
140 89 68 44 43 25 18
|
41 61 58 63 73 70 67
|
78 97 100 100 100 100 100
|
- - - - - - -
|
Предел выносливости стали 12ХН3А |
σ-1, МПА
|
J-1, МПА
|
Термообработка |
382
338
382-461
441
|
-
230
216-255
245
|
σ0,2=680 МПа, σв=960 МПа, НВ 322 σ0,2=610 МПа, σв=730 МПа, НВ 238 σв=690 МПа, n=106 σв=910 МПа
|
Прокаливаемость стали 12ХН3А (ГОСТ 4543-71) |
Расстояние от торца, мм |
Примечание |
1,5 |
3 |
4,5 |
6 |
7,5 |
9 |
12 |
15 |
21 |
27 |
Закалка 840 °С |
38,5-43 |
37-43
|
35-42
|
31,5-41
|
25-40,5
|
22-38,5 |
35 |
32 |
28,5
|
26,5
|
Твердость для полос прокаливаемости, HRC |
Количество мартенсита, % |
Критический диаметр в воде |
Критический диаметр в масле |
50 95
|
32-65 18-29
|
20-50 10-17
|
Физические свойства стали 12ХН3А |
T (Град) |
E 10- 5 (МПа) |
a 10 6 (1/Град) |
l (Вт/(м·град)) |
r (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
20 |
2 |
|
|
7850 |
|
|
100 |
|
11.8 |
31 |
7830 |
|
|
200 |
|
13 |
|
7800 |
|
|
300 |
|
14 |
|
7760 |
|
|
400 |
|
14.7 |
26 |
7720 |
528 |
|
500 |
|
15.3 |
|
7680 |
540 |
|
600 |
|
15.6 |
|
7640 |
565 |
|
Расшифровка марки стали 12ХН3А: цифра 12 перед маркой стали говорит о том, что в ней содержится 1,2% углерода, Х - свидетельствует о небольшом содержании хрома менее 1,5%, а Н3 - о том что имеется никель в количестве 3%, буква А на конце обозначение сообщает, что это высококачественная чистая сталь с содержанием вредных серы и фосфора менее 0,025%. Таким образом перед нами легированная высококачественная сталь.
Цементация изделий из стали 12ХН3А в кипящем слое: на образцах из сталей 12ХН3А и 18Х2Н4ВА, цементированных по оптимальному режиму, были исследованы режимы дальнейшей термической обработки в целях создания полного цикла обработки в кипящем слое. По существующей технологии детали из этих сталей подвергают после цементации высокому отпуску, закалке и низкому отпуску.
Были изучены: 1) непосредственная закалка с цементационного нагрева в холодный (20° С) кипящий слой; 2) закалка в холодный кипящий слой с предварительным подстуживанием от температуры цементации 950 до 800° С; 3) закалка как отдельная операция после высокого отпуска.
Первые два режима не дали положительных результатов вследствие недопустимо большого количества остаточного аустенита: по первому режиму 70-75 и 16-18%, а по второму 19-25 и 7-9% соответственно для сталей 18Х2Н4ВА и 12ХНЗА. Поэтому более подробно был исследован третий режим.
Отпуск образцов стали 18Х2Н4ВА после цементации при 950° С в кипящем слое (4 ч) и керосином в печи Ц-105 (12 ч) проводили при 650° С в трех различных средах одинаковыми партиями по 30 шт.: в электропечи, в кипящем слое (на полупромышленной установке Турбомоторного завода) и в свинцовой ванне. Исследовали количество остаточного аустенита (на магнитометре Штейнберга), ударную вязкость и твердость в зависимости от времени выдержки. Распределение углерода после цементации в обоих случаях было практически одинаковым. С увеличением времени выдержки количество остаточного аустенита понижается, причем наиболее интенсивно в первые три часа отпуска. Ударная вязкость незначительно повышается, а твердость вначале несколько увеличивается в связи С распадом остаточного аустенита, а затем снижается. При повторном отпуске твердость, так же как и количество остаточного аустенита, снижаются с увеличением времени отпуска.

Наиболее интересные данные получены при изучении влияния среды отпуска на количество остаточного аустенита. После отпуска в кипящем слое количество аустенита такое же, как и после отпуска в свинцовой ванне, и приблизительно вдвое меньше, чем после отпуска в электропечи.
Сталь 18Х2Н4ВА после цементации в кипящем слое и высокого отпуска при 650° С в течение 3 ч в кипящем слое и в электропечи. Охлаждение осуществляли после отпуска на воздухе. Остаточный аустенит при отпуске в кипящем слое претерпевает больший распад, чем при отпуске в электропечи.
Более интенсивный распад остаточного аустенита после отпуска в кипящем слое по сравнению с отпуском в электропечи можно объяснить скоростным нагревом. Как и при нагреве в свинце, напряженное состояние, характеризуемое дефектами кристаллического строения, в процессе нагрева сохраняется до более высоких температур, чем при нагреве в электропечи. Дефекты кристаллической решетки служат зародышевыми центрами для выделения карбидной фазы, которых в случае скоростного нагрева в кипящем слое и в свинце больше, чем при нагреве в электропечи. В процессе отпуска в кипящем слое выделяется больше карбидов, что обедняет остаточный аустенит углеродом. Это вызывает повышение мартенситной точки и более полный распад остаточного аустенита при последующем охлаждении. Кроме того, при скоростном нагреве не успевают завершиться процессы перераспределения легирующих элементов. В частности, никель, не входящий в состав карбидов, сосредоточивается при медленном нагреве в твердом растворе, и, обогащенный никелем остаточный аустенит характеризуется большей устойчивостью, чем при быстром нагреве в кипящем слое.
Сравнительные эксперименты показали, что при охлаждении отпущенных образцов на воздухе количество остаточного аустенита оказывается на 20-30% меньше, чем при охлаждении в масле. Быстрое охлаждение в масле ведет к мартенситному превращению части обедненного остаточного аустенита, которое в свою очередь не идет до конца, в то время как замедленное охлаждение на воздухе стимулирует развитие бейнитного превращения, протекающего полнее, чем мартенситное.
По полученным данным был выбран режим высокого отпуска в кипящем слое при 650° С в течение трех часов с последующим охлаждением на воздухе.
После отпуска детали нагревали до 820° С в электропечи (2 ч) или в кипящем слое (20 мин) и закаливали как в холодный кипящий слой частиц корунда 120 мкм, так и в масло. Предварительно были сняты термограммы охлаждения шестерен двух различных размеров (с толщиной стенки или полуразностью наружного и внутреннего диаметров 18 и 30 мм). В диапазоне температур 820-250° С шестерня охлаждается в масле несколько быстрее, чем в кипящем слое, а при более низких температурах - медленнее. Время охлаждения до 220-250° С в обеих средах одинаково и для меньшей и большей шестерен равно соответственно 1,5 и 2,5 мин. Твердость и структуру после закалки изучали непосредственно на шестернях. Механические свойства сталей 18Х2Н4ВА и 12ХНЗА определяли на образцах длиной 170 мм диаметром соответственно 25 и 21 мм, прошедших весь описанный выше цикл термообработки. При закалке по исследованным четырем вариантам они оказались практически одинаковыми. Количество остаточного аустенита при нагреве в кипящем слое было меньше, чем при нагреве в электропечи, а при одинаковых условиях нагрева закалка в кипящем слое давала меньше остаточного аустенита, чем закалка в масле. Структура после закалки в кипящем слое и масле была практически одинаковой: цементированный слой состоит из мелкоигольчатого мартенсита, карбидов и остаточного аустенита, а сердцевина - из перлита и феррита (сталь 12ХН3А) или бейнита (сталь 18Х2Н4ВА).
В результате был выбран наиболее быстрый вариант закалки, дающий к тому же наименьшее количество остаточного аустенита: нагрев в кипящем слое до 820° С с выдержкой (общее время 20 мин) и охлаждение в холодном кипящем слое (10 мин).
В заключение проведено сравнение результатов испытаний цементированной стали 12ХН3А на износостойкость, статическую прочность при растяжении и усталость после цементации и последующей термообработки в кипящем слое с результатами термической обработки по существующей технологии.
Процесс термообработки был выполнен в трех вариантах.
I. Существующая технология: цементация (930° С, 10 ч) - - охлаждение на воздухе - высокий отпуск (650° С, 9 ч) - закалка (800° С, 2 ч) низкий отпуск (170° С, 3 ч).
II. В кипящем слое: цементация (950° С, 2,5 ч) - закалка с подстуживанием - низкотемпературный отпуск (170° С, 2 ч).
III. В кипящем слое: цементация (950° С, 2,5 ч) - охлаждение на воздухе - высокий отпуск (650° С, 3 ч) - закалка (820° С, 1/3 ч) - низкий отпуск (170° С, 2 ч).
Износостойкость испытывали на машине МИ-1М (цикл 15 000 оборотов) при трении качения с проскальзыванием без смазки при удельном давлении в месте контакта испытуемой пары 39 кгс/мм2, соответствующем удельному давлению в зубьях шестерен дизеля и скорости вращения эталонов 320 и 400 об/мин. Потеря массы образцов составила 581-647 мг, 466-483 мг и 430-461 мг соответственно при обработке по I, II и III вариантам. Таким образом, наилучшим оказался вариант III.
Статическую прочность стали испытывали на образцах рабочим диаметром 8 мм с глубокими кольцевыми концентраторами напряжений гиперболического профиля. Радиус разреза меняли от 0,18 до 7 мм, что соответствовало широкому диапазону коэффициентов концентрации напряжений ао от 1,0 до 6,04. Видно, что среднее значение ов по вариантам I и III практически одинаково, однако вариант III предпочтительнее, поскольку при такой обработке в отличие от обработки по существующей технологии σв почти не зависит от ао.
Усталостную прочность стали 12ХНЗА испытывали на машине МВП-10 000 при чистом изгибе с вращением, частоте 83 Гц и базе испытаний 5.106 циклов. Испытания выполняли на 75 аналогичных образцах, режимы I и III дают одинаковые и несколько лучшие результаты, чем режим II.
По результатам указанных испытаний для промышленной эксплуатации может быть рекомендован следующий оптимальный режим цементации и последующей термообработки деталей из сталей 18ХНВА и 12ХН3А: цементация при ав = 0,26-0,28 с добавкой 15% природного газа при 950° С, 2,5 (10) ч - охлаждение на воздухе - высокий отпуск, 650° С, 3 (9) ч - охлаждение на воздухе - нагрев под закалку до 820° С в кипящем слое и выдержка 20 мин (2 ч) - охлаждение в кипящем слое - низкий отпуск в кипящем слое 170° С, 2 (3) ч. Применение кипящего слоя позволяет сократить полный цикл обработки втрое, т. е. с 24 до 8 ч, получив такие же прочностные показатели. При этом глубина цементированного слоя составляет 1,1-1,4 мм, а поверхностная концентрация углерода (с учетом его перераспределения при охлаждении и высоком отпуске) 0,9-1,0% С.
По отработанным оптимальным режимам были цементированы шестерни различных диаметров от 50 до 120 мм, валики, тарелки клапанов, распылители, детали сложной конфигурации, имеющие узкие отверстия.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
 | |
|