Марка: 12Х18Н10Т (старое название Х18Н10Т) (заменители: 08Х18Г8Н2Т, 10Х14Г14Н4Т, 12Х17Г9АН4, 08Х22Н6Т, 08Х17Т, 15Х25Т, 12Х18Н9Т) Класс: Сталь конструкционная криогенная Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 5949-75, ГОСТ 2590-2006, ГОСТ 2879-2006. Калиброванный пруток ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78. Шлифованный пруток и серебрянка ГОСТ 14955-77, ГОСТ 18907-73. Лист толстый ГОСТ 7350-77. Лист тонкий ГОСТ 5582-75. Лента ГОСТ 4986-79. Проволока ГОСТ 18143-72. Поковки и кованные заготовки ГОСТ 25054-81, ГОСТ 1133-71 Трубы ГОСТ 9940-81, ГОСТ 9941-81, ГОСТ 14162-79. Использование в промышленности: детали, работающие до 600 °С. Сварные аппараты и сосуды, работающие в разбавленных растворах азотной, уксусной, фосфорной кислот, растворах щелочей и солей и другие детали, работающие под давлением при температуре от —196 до +600 °С, а при наличии агрессивных сред до +350 °С.; сталь аустенитного класса |
Химический состав в % стали 12Х18Н10Т ( стар. Х18Н10Т ) |
C |
до 0,12 |
 |
Si |
до 0,8 |
Mn |
до 2 |
Ni |
9 - 11 |
S |
до 0,02 |
P |
до 0,035 |
Cr |
17 - 19 |
Cu |
до 0,3 |
Ti |
0,4-1 |
Fe |
~67 |
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
12Х18Н10Т труба, лента, проволока, лист, круг 12Х18Н10Т
Зарубежные аналоги марки стали 12Х18Н10Т ( стар. Х18Н10Т ) |
США |
321, 321H, S32100, S32109 |
Германия |
1.4541, 1.4878, X10CrNiTi18-10, X12CrNiTi18-9, X6CrNiTi18-10 |
Япония |
SUS321 |
Франция |
Z10CNT18-10, Z10CNT18-11, Z6CNT18-10, Z6CNT18-12 |
Англия |
321S31, 321S51, 321S59, LW18, LW24, X6CrNiTi18-10 |
Евросоюз |
1.4541, 1.4878, X10CrNiTi18-10, X6CrNiTi18-10KT |
Италия |
X6CrNiTi18-11, X6CrNiTi18-11KG, X6CrNiTi18-11KT |
Испания |
F.3523, X6CrNiTi18-10 |
Китай |
0Cr18Ni10Ti, 0Cr18Ni11Ti, 0Cr18Ni9Ti, 1Cr18Ni11Ti, H0Cr20Ni10Ti |
Швеция |
2337 |
Болгария |
0Ch18N10T, Ch18N12T, Ch18N9T, X6CrNiTi18-10 |
Венгрия |
H5Ti, KO36Ti, KO37Ti, X6CrNiTi18-10 |
Польша |
0H18N10T, 1H18N10T, 1H18N12T, 1H18N9T |
Румыния |
10TiNiCr180, 12TiNiCr180 |
Чехия |
17246, 17247, 17248 |
Австрия |
X6CrNiTi18-10KKW, X6CrNiTi18-10S |
Австралия |
321 |
Юж.Корея |
STS321, STS321TKA, STSF321 |
Свойства и полезная информация: |
Удельный вес: 7920 кг/м3 Термообработка: Закалка 1050 - 1100oC, вода Температура ковки: начала 1200 °С, конца 850 °С. Сечения до 350 мм охлаждаются на воздухе Твердость материала: HB 10 -1 = 179 МПа Свариваемость материала: без ограничений, способы сварки: РДС (электроды ЦТ-26), ЭШС и КТС. Рекомендуется последующая термообработка Обрабатываемость резанием: в закаленном состоянии при HB 169 и σв=610 МПа, Кu тв. спл=0,85, Кu б. ст=0,35 Флокеночувствительность: не чувствительна Жаростойкость: в воздухе при Т=650 °С 2-3 группа стойкости, при Т=750 °С 4-5 группа стойкости Предел выносливости: σ-1=279 МПа, n=107 |
Механические свойства стали 12Х18Н10Т ( стар. Х18Н10Т )
|
ГОСТ |
Состояние поставки, режимы термообработки
|
Сечение, мм |
σ0,2 (МПа) |
σв(МПа) |
δ5 (%) |
ψ % |
ГОСТ 5949-75 |
Прутки. Закалка 1020-1100 °С, воздух, масло или вода. |
60 |
196 |
510
|
40 |
55
|
ГОСТ 18907-73 |
Прутки шлифованные, обработанные на заданную прочность. Прутки нагартованные.
|
- До 5 |
- -
|
590-830 930
|
20 - |
- - |
ГОСТ 7350-77 (Образцы поперечные) ГОСТ 5582-75 (Образцы поперечные)
|
Листы горячекатанные и холоднокатанные: - закалка 1000-1080 °С, вода или воздух.
- закалка 1050-1080 °С, вода или воздух.
- нагартованные
|
Св. 4 До 3,9
До 3,9
|
236
205
-
|
530
530
880-1080 |
38
40
10 |
-
-
- |
ГОСТ 25054-81
|
Поковки. Закалка 1050-1100 °С, вода или воздух.
|
До 1000 |
196 |
510 |
35 |
40
|
ГОСТ 18143-72 |
Проволока термообработанная. |
1,0-6,0 |
- |
540-880 |
20 |
- |
ГОСТ 9940-8
|
Трубы бесшовные горячедеформированные без термообработки
|
3,5-32 |
- |
529 |
40 |
- |
Механические свойства стали 12Х18Н10Т ( стар. Х18Н10Т ) при повышенных температурах |
Температура испытаний, °С |
σ0,2 (МПа) |
σв(МПа) |
δ5 (%) |
ψ % |
KCU (кДж / см2) |
Закалка 1050-1100 °С, охлаждение на воздухе
|
20 500 550 600 650 700
|
225-315 135-205 135-205 120-205 120-195 120-195
|
550-650 390-440 380-450 340-410 270-390 265-360
|
46-74 30-42 31-41 28-38 27-37 20-38
|
66-80 60-70 61-68 51-74 52-73 40-70
|
215-372 196-353 215-353 196-358 245-353 255-353
|
Механические свойства 12Х18Н10Т ( стар. Х18Н10Т ) при испытаниях на длительную прочность (ГОСТ 5949-75) |
Температура испытания, °С
|
Предел ползучести, МПа
|
Скорость ползучести %/ч
|
Предел длительной прочности, МПа, не менее
|
Длительность испытания, ч |
600 650 |
74 29-39 |
1/100000
|
147 78-98 |
10000 |
Ударная вязкость стали 12Х18Н10Т ( стар. Х18Н10Т ) KCU, (Дж/см2) |
Т= +20 °С
|
Т= -40 °С |
Т= -75 °С |
Термообработка |
286 |
303
|
319 |
Полоса 8х40 мм в состоянии покоя
|
Чуствительность стали 12Х18Н10Т ( стар. Х18Н10Т ) к охрупчиванию при старении |
Время, ч
|
Температура, °С
|
KCU, Дж/см
|
Исходное состояние 5000 5000
|
600 650
|
274 186-206 176-196
|
Жаростойкость стали 12Х18Н10Т ( стар. Х18Н10Т ) |
Среда |
Температура, ºС
|
Группа стойкости или балл |
Воздух
|
650 750
|
2-3 4-5
|
Физические свойства стали 12Х18Н10Т ( старое название Х18Н10Т ) |
T (Град) |
E 10- 5 (МПа) |
a 10 6 (1/Град) |
l (Вт/(м·град)) |
r (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
20 |
1.98 |
|
15 |
7920 |
|
725 |
100 |
1.94 |
16.6 |
16 |
|
462 |
792 |
200 |
1.89 |
17 |
18 |
|
496 |
861 |
300 |
1.81 |
17.2 |
19 |
|
517 |
920 |
400 |
1.74 |
17.5 |
21 |
|
538 |
976 |
500 |
1.66 |
17.9 |
23 |
|
550 |
1028 |
600 |
1.57 |
18.2 |
25 |
|
563 |
1075 |
700 |
1.47 |
18.6 |
27 |
|
575 |
1115 |
800 |
|
18.9 |
26 |
|
596 |
|
900 |
|
19.3 |
|
|
|
|
Характеристика и особенности элекрошлаковой сварки стали 12Х18Н10Т: хромоникелетитановая аустенитная сталь 12Х18Н10Т получила наибольшее распространение в промышленности ввиду возможности успешного использования ее в разнообразных эксплуатационных условиях. Она обладает высокой коррозионной стойкостью в ряде жидких сред, устойчива против межкристаллитной коррозии после сварочного нагрева, сравнительно мало охрупчивается в результате длительного воздействия высоких температур и может быть применена в качестве жаропрочного материала при температурах ~600° С. Будучи высокопластичной в условиях глубокого холода, эта сталь используется в установках для получения жидкого кислорода.
Сварные швы конструкций, работающих в контакте с агрессивными жидкостями, должны прежде всего обладать стойкостью против межкристаллитной коррозии.
Применяемые для электрошлаковой сварки пластинчатые электроды из горячекатаных листов содержат не менее 0,10% С. При таком содержании углерода ввиду замедленного охлаждения, характерного для электрошлаковой сварки, возможно появление склонности шва к межкристаллитной коррозии. Этому способствует также крупнокристаллическое строение металла шва.
При использовании фторидных флюсов окисление титана, содержащегося в электроде, невелико и не превышает 20%. Однако даже небольшое уменьшение концентрации титана в шве при содержании 0,1% С влечет за собой снижение коррозионной стойкости. Поэтому при электрошлаковой сварке рекомендуется применять электроды из сталей с пониженным содержанием углерода, с тем чтобы концентрация его в шве не превышала 0,08%. Если его концентрация в основном металле равна 0,12%, необходимо применять пластинчатый электрод, содержащий не более 0,03% С.
Рост зерна в околошовной зоне не снижает механических свойств сварного соединения, однако он крайне нежелателен с точки зрения коррозионной стойкости околошовной зоны, особенно на участке, непосредственно примыкающем ко шву. При нагреве свариваемого металла до температур, превышающих 1200-1250° С, карбиды титана растворяются в аустените. При последующем замедленном охлаждении, особенно в интервале критических температур (875-450° С), способных вызвать распад твердого раствора, происходит выпадение карбидной фазы по границам зерен аустенита и обеднение пограничных областей последних хромом. В результате свариваемый металл приобретает склонность к межкристаллитной коррозии. Для ее предотвращения при электрошлаковой сварке необходимо применять сталь 12Х18Н10Т со строго контролируемым химическим составом: содержание углерода в ней не должно превышать 0,06%, соотношение содержаний титана и углерода Ti/C должно быть не менее 7.
Другим средством устранения склонности к коррозии сварного соединения у линии сплавления служит нагрев в течение 3-4 ч при 850-900° С с охлаждением на воздухе.
Сталь и электрод в состоянии поставки (после закалки в воду. от 1100° С) обычно имеют почти чистоаустенитную структуру с очень небольшим количеством, не более 1%, б-феррита. Металл шва вследствие дендритной ликвации содержит до 7,5% б-феррита. Это приводит к резкому снижению ударной вязкости в условиях глубокого холода.
Сварные швы на стали 12Х18Н10Т заметно уступают основному металлу в пластичности, что объясняется дендритной ликвацией углерода. Причиной пониженной ударной вязкости сварных швов является недостаточная стабильность аустенита при сверхнизких температурах. В условиях глубокого холода возможен распад аустенита по схеме А - М или А - а + К", где А - аустенит, М - мартенсит, а - вторичный феррит, К" - вторичные карбиды. Наличие небольшого количества первичного феррита в данном случае не имеет решающего значения. Об этом свидетельствуют результаты следующих опытов. Часть образцов подвергли закалке на воздухе после часового нагрева при 1080°, С, благодаря чему была ликвидирована дендритная ликвация углерода, но сохранена ферритная составляющая. Ударная вязкость шва повысилась в 2 раза (данные ниже).
Наличие закалки шва после сварки (an (МДж/м2) при различной температуре °С):
Нет - при 20 °С = 1,81; при -196 °С = 0,54
Есть - при 20 °С = 3,5; при -196 °С = 1,03
Таким образом, повышение ударной вязкости сварного шва на стали 12Х18Н10Т можно достичь устранением дендритной ликвации углерода путем высокотемпературного нагрева. В данном случае может быть применена и местная термообработка швов.
Более простое средство повышения ударной вязкости металла шва - увеличение содержания никеля в шве до 12-14%, что обеспечивает стабильную аустенитную структуру. Чтобы получить шов с таким содержанием никеля, можно использовать электроды из стали типа Х23Н18. В этом случае сварные швы без термообработки сохраняют достаточно высокую ударную вязкость в условиях глубокого холода. В случае, когда сталь 12Х18Н10Т применяется в качестве жаропрочного материала, необходимо ограничивать содержание в шве первичного феррита 5%. Это предотвращает опасность превращения δ - σ в сварном шве и обеспечивается использованием пластинчатых электродов из стали 12Х18Н10Т. Наиболее высокие показатели жаропрочности швов достигаются при повышенном содержании углерода и карбидообразуюших элементов - титана и ниобия (таблица ниже).

В случае отсутствия стали с повышенным содержанием углерода применяют электроды с содержанием 0,07-0,08% С и дополнительно науглероживают металл шва, например, путем подачи крупки древесного угля или графита на поверхность шлаковой ванны тотчас после ее наведения. При сварке металла сечением 100 X 100 мм достаточно подать 1,7 г крупки размером 1-3 мм. Содержание углерода в шве может быть увеличено также за счет введения в шлаковую ванну 10% массы шлака смеси Na2C03 (82-86%) и SiC (14-18%) или применения составного электрода из сталей 12Х18Н10Т и углеродистой.
Швы стали 12Х18Н10Т отличаются грубой столбчатой макроструктурой. Литой металл шва содержит ферритную составляющую, обусловленную дендритной ликвацией. Под воздействием глубокого холода в основном металле и сварном швевозрастает количество ферромагнитной составляющей. Так, например, в стали 12Х18Н10Т, имеющей в состоянии поставки 2,5 - 3% феррита после 30 мин пребывания в жидком азоте (-196° С), количество магнитной составляющей возрастает до 7-9% (при комнатной температуре), а в сварном шве соответственно 7,5 - 8,5 и 10-12%.
Интересно отметить, что после воздействия глубокого холода в околошовной зоне наблюдается более мелкая структура, чем после сварки. Закалка разрушает столбчатую микроструктуру сварных швов и способствует некоторому растворению ферритной составляющей. Типичная для аустенитных сварных швов столбчатая макроструктура сохраняется.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
 | |
|