|
Реклама. ООО ГК "Велунд Сталь Сибирь" ИНН 5405075282 Erid: 2SDnjf1Guop
| |
Марка: МА8 |
Класс: Магниевый деформируемый сплав |
Использование в промышленности: для листов, плит, штамповок сложной конфигурации; для сварных конструкций; предельная рабочая температура: 200°C -длительная, 250°C -кратковременная |
Химический состав в % сплава МА8 |
Mn |
1,5 - 2,5 |
|
Mg |
97,5 - 98,5 |
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
МА8 труба, лента, проволока, лист, круг МА8
Свойства и полезная информация: |
Твердость материала: HB 10 -1 = 40 МПа |
Линейная усадка, %: 5.4 |
Механические свойства сплава МА8 при Т=20oС |
Прокат |
Размер |
Напр. |
σв(МПа) |
sT (МПа) |
δ5 (%) |
ψ % |
KCU (кДж / м2) |
|
|
|
220-250 |
140-160 |
7-12 |
|
50 |
Физические свойства сплава МА8 |
T (Град) |
E 10- 5 (МПа) |
a 10 6 (1/Град) |
l (Вт/(м·град)) |
r (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
20 |
0.42 |
|
133.9 |
1780 |
|
51 |
100 |
|
23.7 |
|
|
1046.7 |
|
Получение деформируемых сплавов магния (в том числе МА8): Слитки из различных магниевых сплавов, получаемые методом полунепрерывного литья с непосредственным охлаждением водой, имеют неодинаковую структуру по величине зерна.
Слитки из сплавов МА2, МАЗ, МА5, ВМ65-1 характеризуются мелкокристаллической, однородной и равноосной структурой и не нуждаются в модифицировании.
Слитки из сплавов MA1, МА8, МА9, МА11, МА13 и ВМ17 характеризуются грубой кристаллической структурой и нуждаются в модифицировании.
Полуфабрикаты, полученные обработкой давлением из слитков магниевых сплавов с грубой кристаллической структурой, имеют более низкие механические свойства, чем полуфабрикаты из слитков с мелкокристаллической структурой. Поэтому получение слитков из магниевых сплавов с мелкокристаллической структурой является одной из важных задач в области заготовительного литья.
Существующие методы искусственного измельчения литейных магниевых сплавов перегревом и обработкой углеродсодержащими солями для деформируемых магниевых сплавов в условиях полунепрерывного литья слитков из отражательных печей большой емкости неприемлемы. Объясняется это следующим.
1. Эффект модифицирования перегревом проявляется только в случае модифицирования магниевых сплавов системы магний — алюминий — цинк в стальных тиглях. Перегрев сплава
в графитовых тиглях и подовых печах к измельчению структуры не приводит.
2. Эффект модифицирования магниевых сплавов углеродсодержащими веществами сохраняется только в течение не более 40 мин, а процесс литья слитков из отражательных печей большой емкости длится 8—10 ч. Следовательно, данный метод будет обеспечивать модифицированную структуру только тем слиткам, которые будут отлиты в течение первых 40 мин, последующие слитки будут отливаться с немодифицированной структурой, так как эффект модифицирования исчезнет.
Длительный период разливки сплава отрицательно влияет и на затравочный эффект выгораемых специальных металлических добавок. Например, исследованиями установлено, присадка малой добавки циркония в магниевые сплавы с марганцем при разливке сплава из отражательной печи полунепрерывным методом не приводит к измельчению зерна в структуре слитка, так как модифицирующий эффект специальных добавок при длительной разливке сплава исчезает.
Специальные затравочные добавки, которые бы сохраняли модифицирующий эффект в расплаве магниевых сплавов продолжительное время, пока не найдены.
Положительное влияние на измельчение зерна структуры слитков магниевых сплавов, отливаемых полунепрерывным методом, оказывают физические методы воздействия на жидкий металл в момент его кристаллизации.
Из физических методов измельчения структуры легких сплавов наиболее эффективным является метод наложения электромагнитного поля на кристаллизующуюся зону слитка. Этот метод доведен до промышленного применения и дает хорошие результаты по устранению столбчатой структуры в слитках.
Электромагнитное поле, наложенное на зону кристаллизации, вызывает электродинамические силы в кристаллизаторе, под воздействием которых происходит перемешивание расплава в лунке, и обеспечивает однородное температурное поле жидкого металла в лунке. Благодаря этому явлению создаются благоприятные условия для равноосной кристаллизации металла и получения слитка с мелкокристаллической структурой и повышенными механическими свойствами. Схема промышленной установки полунепрерывного литья плоских слитков из легких сплавов с наложением электромагнитного поля приведена на рис. 84.
Оптимальными условиями воздействия электромагнитного поля применительно к сплаву МА8, по данным исследования, являются температура в пределах 710—720° С и сила тока на выходной стороне трансформатора высокого напряжения до 200 а при скорости литья 4—5 см/мин.
Повышение температуры литья до 740—760° С, а также понижение силы тока до 180—190 а ослабляют эффект влияния электромагнитного поля на измельчение структуры слитка.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
|
|