|
Реклама. ООО ГК "Велунд Сталь Сибирь" ИНН 5405075282 Erid: 2SDnjf1Guop
| |
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Латунь труба, лента, проволока, лист, круг Латунь
Свойства и полезная информация:
|
Температура плавления: 880—950° С |
Плотность: 8300-8700 кг/м³ |
Удельная теплоёмкость: при 20 °C — 0,377 кДж·кг−1·K−1 |
Удельное электрическое сопротивление: (0,07-0,08)×10−6 Ом·м |
Общая характеристика латуни: латуни представляют собой двойные или многокомпонентные медные сплавы, в которых цинк является основным легирующим компонентом. По сравнению с медью они обладают более высокой прочностью (в том числе при повышенных температурах), коррозионной стойкостью, упругостью, технологичностью (литье, обработка давлением, резание), трибологическими характеристиками. Это наиболее дешевые и распространенные в машиностроении медные сплавы.
Двойные латуни, содержащие до 20 % Zn, называются томпаком (латуни, содержащие 14—20 % Zn — полутомпаком).
Диаграмма состояния Сu—Zn характеризуется пятью перитектическими реакциями. В результате из жидкого раствора кристаллизуется шесть различных фаз. Практическое значение имеют сплавы, содержащие до 50 % Zn; соответствующая этому содержанию часть диаграммы состояния включает область а-твердого раствора цинка в меди. Граница растворимости цинка в меди при комнатной температуре равна 39 %; а-твердый раствор имеет гранецентрированную кристаллическую решетку. Фаза в является твердым раствором на основе соединения CuZn с объемно центрированной кристаллической решеткой. Ширина области гомогенности в-фазы меняется в зависимости от температуры: от 37 до 57 % Zn при высоких температурах и от 45 до 49 % Zn при комнатной.
В соответствии с диаграммой состояния двойные латуни в зависимости от структуры подразделяются на а-латуни, (а + в)-латуни и в-латуни.
При температуре 454—468 °С происходит упорядочение в-твердого раствора, т. е. ниже этих температур наблюдается определенный порядок в расположении атомов меди и цинка в кристаллической решетке в-фазы. Переход неупорядоченного твердого раствора в упорядоченное состояние сопровождается резким падением пластичности и повышением хрупкости сплавов, что затрудняет их обработку давлением в холодном состоянии.
Таким образом, латуни, содержащие более 39 % Zn, имеют двухфазную структуру а + в или однофазную в и обладают низкой пластичностью, поэтому они хорошо обрабатываются давлением лишь в горячем состоянии, в отличие от а-латуни, которая хорошо обрабатывается в холодном состоянии.
В многокомпонентных (специальных) латунях добавки третьего, четвертого элемента и более могут повышать прочность, твердость, упругость, коррозионную стойкость, антифрикционные свойства и технологические характеристики. В зависимости от дополнительных легирующих элементов латунь, содержащую А1, называют алюминиевой; Fe и Мп — железомарганцевой; Мn, Sn, Pl — марганцево-оловянно-свинцовой и т. д.
Двойные латуни маркируют буквой Л и числом, характеризующим среднее содержание меди в сплаве в %. В обозначении многокомпонентных латуней после буквы Л указывают легирующие элементы. Числа после букв означают содержание легирующих элементов.
По технологическому признаку латуни подразделяют на литейные и обрабатываемые давлением. Для изготовления литейных латуней могут применяться вторичные литейные латуни.
Получение латуни: Для плавки латуни может быть использован любой тип плавильных печей, применяемых для плавки медных сплавов. Но наиболее целесообразно латунь плавить в электрических индукционных низкочастотных печах с магнитопроводом. Менее желательна плавка латуни в электродуговых плавильных печах.
При плавке медноцинковых сплавов следует иметь в виду, что из всех других компонентов сплава наибольшей окисляемостью обладает цинк. Это объясняется низкой температурой кипения его.
Для уменьшения окисления цинка рекомендуются следующие мероприятия:
1) максимально ускорять процесс загрузки и плавки шихты, для этого загружать шихту в печь в компактном виде таким образом, чтобы куски и пакеты могли хорошо и плотно укладываться в печи;
2) поверхность жидкого сплава следует покрывать кусковым древесным углем;
3) загрузочное отверстие печи по возможности держать всегда закрытым;
4) не допускать излишнего перегрева расплава (выше температуры 1100—1200° С).
В качестве шихты для плавки латуни могут быть использованы как чистые, так и оборотные металлы. При плавке латуни на оборотных металлах порядок загрузки шихты в печь не имеет большого значения. При наличии в шихте свежих металлов в первую очередь загружают и расплавляют медь, затем оборотные металлы. Цинк и свинец, предварительно подогретые до 100—120° С, вводят в расплав в последнюю очередь. Во всех случаях плавка ведется под слоем древесного угля, который загружается в печь с первой порцией шихты.
Плавку латуни из свежих металлов и оборотных отходов в индукционной печи промышленной частоты с магнитопроводом рекомендуется вести в следующей последовательности.
1. По окончании разливки печь устанавливают в рабочее положение. При обнаружении оголенного канала печи выключают ток и канал заливают расплавленным металлом из другой плавильной печи.
2. Аккуратно загружают два-три пакета отходов, включают ток и производят дальнейшую загрузку шихты в печь в следующем порядке: вначале загружают предварительно подсушенные прессованные отходы в количестве 15—20% от массы всей шихты, стружку, опилки и другую мелочь; затем в жидкий металл загружают медь и тугоплавкие лигатуры (в случае плавки специальных латуней); одновременно с этим в печь загружают необходимое количество кускового древесного угля; после этого осторожно загружают переплавленные отходы и литники и в последнюю очередь загружают цинк и другие легкоплавкие компоненты (в случае приготовления специальных латуней).
3. Во избежание повреждения футеровки печи масса кусков шихтовых материалов не должна превышать 25 кг.
4. Шахта печи должна загружаться плотно и быстро, загрузочное окно при этом не должно долго оставаться открытым.
5. При плавке надо следить за тем, чтобы шихта не зависала в шахте. Быстрое колебание стрелки амперметра сигнализирует о том, что шихта отделена от расплавленного металла. Зависшую шихту с помощью деревянного шеста или какого-либо другого приспособления опускают вниз. При зависании шихты время плавки удлиняется и увеличивается угар металла.
6. В случае ведения плавки латуни на чистых металлах (меди и цинка) вначале загружают 25% шихты (вместе медь и цинк), затем всю оставшуюся медь и в последнюю очередь цинк (или другой легкоплавкий металл).
7. Шихта должна быть сухой; загрузка влажной шихты запрещается.
8. Тяжелые куски шихты должны загружаться в печь при помощи специальных приспособлений.
9. Шихта должна подаваться к печи в нумерованной таре (тележке). Это исключает смешивание шихты.
10. Необходимо иметь около печи некоторый запас шихты (две-три тележки).
11. После расплавления и нагрева расплава до заданной температуры с поверхности расплава снимают шлак, тщательно перемешивают и производят разливку.
Для увеличения жидкотекучести латуни в нее иногда перед разливкой добавляют фосфор в виде лигатуры медь — фосфор, содержащей 12—14% Р.
Плавку кремнистой и кремнистосвинцовистой латуней ведут под покровным флюсом — стеклом или бурой. Вследствие склонности кремнистых латуней к поглощению восстановительных газов плавить их в восстановительной атмосфере или под слоем древесного угля нельзя.
При плавке кремнистых и кремнистосвинцовистых латуней в первую очередь в разогретую печь загружают медь, по расплавлении ее — отходы, меднокремнистую лигатуру. Цинк и свинец загружают в последнюю очередь после снятия шлака с расплава. Расплав тщательно перемешивают, доводят его до температуры разливки и затем разливают.
Плавку марганцовистых латуней ведут в условиях слабоокислительной атмосферы или близкой к нейтральной под покровом флюса из битого стекла, или под покровом древесного угля. Марганец в расплав вводят с лигатурами после расплавления всех других составляющих шихты.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
|
|