 |
Реклама. ООО ГК "Велунд Сталь". ИНН 9725035180 Erid: Kra23jSgK
|  |
Марка: АО9-1 |
Класс: Алюминиевый антифрикционный сплав |
Использование в промышленности: для получения биметаллической ленты со сталью и дюралюминием методом прокатки с последующей штамповкой вкладышей с толщиной антифрикционного слоя менее 1 мм. |
Химический состав в % сплава АО9-1 |
Fe |
до 0,5 |
 |
Si |
до 0,7 |
Ti |
0,02 - 0,2 |
Al |
87,05 - 91,18 |
Cu |
0,8 - 1,2 |
Zn |
до 0,25 |
Sn |
8 - 10 |
Свойства и полезная информация: |
Твердость материала: HB 10 -1 = 29 - 35 МПа |
Механические свойства сплава АО9-1 при Т=20oС |
Прокат |
Размер |
Напр. |
σв(МПа) |
sT (МПа) |
δ5 (%) |
ψ % |
KCU (кДж / м2) |
|
|
|
105-125 |
70-80 |
30-35 |
70-75 |
750-850 |
Физические свойства сплава АО9-1 |
T (Град) |
E 10- 5 (МПа) |
a 10 6 (1/Град) |
l (Вт/(м·град)) |
r (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
20 |
|
|
|
3000 |
|
|
Производство биметаллических листов из сплва АО9-1 (и других): Помимо широко распространенных биметаллов типа алюминий+сталь или алюминий+дюраль, промышленность также выпускает биметаллы типа алюминий+медь. Опишем производство биметалла алюминий+медь подробнее. В качестве заменителя меди в новых конструкциях в электротехнической промышленности с упспехом применяется алюминий и его сплавы, плакированные медью. Толщина медной плакировки обычно составляет 0,2—0,4 мм.
Биметаллическую полосу (плакированную медью с одной стороны) получают путем холодной прокатки рулонов. Перед прокаткой полосы зачищают на специальном зачистном агрегате, оборудованном разматывателем, правильной машиной, несколькими зачистными устройствами, сматывающим барабаном.
Процесс зачистки заключается в следующем: рулон алюминия или меди помещают в разматыватель и подают в правильную машину, которая одновременно служит задающим устройством для подачи полосы в зачистной станок. Скорость зачистки 3-4 м/мин.
Барабаны оборудованы проволочными щетками с толщиной проволоки 0,3—0,4 мм.
Прокатка осуществляется с обжатием за проход 60—70%; возникающие при этом удельные давления достигают 35—45 кГ/мм2.
Отжиг ленты проводят в проятжных печах. Зависимость скорости протяжки полосы от температуры отжига приведена ниже:
Температура отжига, °С 625—675 675—725 725—825
Скорость протяжки полосы, м/мин 3—3,5 4—4,5 4—5
Скорость отжига подбирают таким образом, чтобы продолжительность нагрева, разупрочняя медь, исключала образование хрупкого слоя.
Биметаллические полосы толщиной 10—18 мм с тонким покрытием медью холодной прокаткой получить не удается, так как для этого требуются очень высокие давления.
Горячая прокатка также вызывает трудности, так как нагрев под прокатку алюминия с медью в негерметизированных или невакуумированных пакетах не представляется возможным ввиду значительного окисления меди.
В связи с этим в промышленности~применяется так называемый «планшетный» способ плакирования алюминия медью, сущность которого заключается в следующем: на первом этапе путем холодной или теплой прокатки изготавливают планшеты алюминий—медь—алюминий. На втором этапе алюминиевую заготовку плакируют трехслойным планшетом уже путем горячей прокатки. Для изготовления планшета используют медь Ml и алюминий.
Поверхность заготовок очищают от окислов и загрязнений механическими проволочными щетками. При холодной прокатке медные карточки зачищают с обеих сторон, алюминиевые — с одной. Между зачищенными карточками алюминия помещают медную заготовку. Прокатку планшетов производят в холодном состоянии за один проход с обжатием 65—75%. Возникающие при этом удельные давления достигают 32—36 кГ/мм2 и обеспечивают прочное сцепление слоев.
Прокатанные в холодном состоянии планшеты подвергают правке, резке в меру и перед горячей прокаткой с алюминием — травлению или зачистке.
Плакировка алюминиевых заготовок медью может быть односторонней, двусторонней, сплошной или частичной.
Пакеты нагревают при 370° С в печи электросопротивления с принудительной циркуляцией воздуха. Продолжительность нагрева не более 1—1,5 ч. Обжатие в первом проходе должно быть не менее 35—40%. Прокатку осуществляют в 3—5 проходов в зависимости от исходной толщины заготовки.
Окончательная операция отделки листов и плит, плакированных медью, заключается в стравливании верхнего слоя алюминия, который уходит в шлам.
Широкое распространение получила новая технология соединения алюминия с медью, при которой на нагретую до температуры горячей прокатки алюминиевую заготовку накладывают холодную медную заготовку и осуществляют прокатку пакета. Этот способ упрощает технологический процесс изготовления биметалла алюминий—медь. Отпадает необходимость защиты меди алюминием от окисления, не требуется стравливания алюминиевого слоя, исключается предварительная холодная прокатка меди, а следовательно, и промежуточный отжиг, который ослабляет прочность сцепления слоев. При новом методе не образуются интерметаллические слои на границе медь-алюминий, поскольку продолжительность деформации ниже времени, необходимого для образования хрупких соединений.
Прогладку осуществляют в симметричных пакетах (при односторонней плакировке). Обжатие в первом проходе 40—45% при суммарном 80% обеспечивает высокую прочность сцепления слоев алюминия с медью.
Нагрев алюминиевой заготовки перед прокаткой производят до температуры 320—460° С. Этот интервал не оказывает заметного влияния на прочность сцепления слоев, и их механические свойства.
Для повышения пластических свойств производят отжиг листов при 250° С с выдержкой от 2 до 6 ч в зависимости от толщины листа; прочность сцепления слоев при этом не снижается.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
 | |
|