Марка: АМг3 |
Класс: Алюминиевый деформируемый сплав |
Использование в промышленности: для изготовления полуфабрикатов методом горячей или холодной деформации; коррозионная стойкость высокая |
Химический состав в % сплава АМг3 |
Fe |
до 0,5 |
 |
Si |
0,5 - 0,8 |
Mn |
0,3 - 0,6 |
Ti |
до 0,1 |
Al |
93,8 - 96 |
Cu |
до 0,1 |
Mg |
3,2 - 3,8 |
Zn |
до 0,2 |
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
АМг3 труба, лента, проволока, лист, круг АМг3
Свойства и полезная информация: |
Удельный вес: 2,67 г/см3 Твердость материала: HB 10 -1 = 45 МПа Свариваемость материала: без ограничений |
Механические свойства сплава АМг3 при Т=20oС |
Прокат |
Толщина или диаметр, мм |
E, ГПа |
G, ГПа |
σ-1, ГПа |
σв, (МПа) |
σ0,2, (МПа) |
δ5, (%) |
ψ, % |
σсж, МПа |
KCU, (кДж/м2) |
KCV, (кДж/м2) |
Лист отожженный
|
2
|
71
|
27
|
90
|
230
|
120
|
25 |
|
120 |
0,4
|
0,25
|
Механические свойства сплава АМг3 при высоких температурах |
Прокат |
T испытания |
σв, (МПа) |
σ0,2, (МПа) |
δ5, (%) |
ψ, % |
Лист отожженный 2 мм
|
20 100 200 300
|
230 220 150 100 |
120 110 90 60
|
25 27 50 60 |
|
Механические свойства сплава АМг3 при низких температурах |
Прокат |
T испытания |
σв, (МПа) |
σ0,2, (МПа) |
δ5, (%) |
ψ, % |
Лист отожженный 2 мм
|
20 -70 -196
|
230 250 330 |
120 120 130
|
25 30 35
|
|
Физические свойства сплава АМг3 |
T (Град) |
E 10- 5 (МПа) |
a 10 6 (1/Град) |
l (Вт/(м·град)) |
r (кг/м3) |
C (Дж/(кг·град)) |
R 10 9 (Ом·м) |
20 |
0.71 |
|
|
2670 |
|
49.6 |
100 |
|
23.5 |
151 |
|
880 |
|
Коррозионные свойства алюминия АМг3.
Получение сплава АМг3: Сначала производится подготовка и загрузка шихты, после плавки в случае положительных результатов экспресс-анализа расплав подвергают рафинированию.
Рафинирование деформируемых алюминиевых сплавов может осуществляться в печи или ковше. В качестве рафинирующих средств могут быть использованы флюсы и газообразный хлор.
В настоящее время наибольшее промышленное применение нашел метод флюсового рафинирования.
В качестве рафинирующих флюсов хорошо себя зарекомендовали смеси, составленные из хлористых и фтористых солей. Например, широкое промышленное применение получил флюс, содержащий 15—23% криолита, 47% хлористого калия и 30—38% хлористого натрия. Расход флюса на 1 т шихты колеблется от 1,5 до 3—5 кг в зависимости от загрязнения расплава шлаковыми включениями.
После расплавления всех составляющих шихты поверхность расплава посыпают флюсом в количестве 6—7 кг на 1 т шихты, шлак на поверхности расплава перемешивают с флюсом и удаляют его, после чего начинают рафинировать расплав.
В расплав с помощью колокольчика вводится кусковой плавленый флюс того же состава (размером кусков около 50 мм). Колокольчик с флюсом спокойно перемещают по дну печи до полного растворения флюса. Температура расплава при рафинировании флюсом должна соответствовать нижнему пределу технологических температур нагрева сплава.
В случае рафинирования алюминиевых сплавов (типа дюралюминия) в ковше процесс рафинирования осуществляется следующим образом.
В ковш заливают небольшое количество расплава, который засыпают рафинирующим флюсом в количестве 0,5 кг. Затем ковш полностью наполняют расплавом, с поверхности последнего снимают шлак и расплав рафинируют кусковым флюсом, вводимым с помощью колокольчика. Колокольчик спокойно перемещают по дну ковша до полного растворения флюса. Расход флюса 1,5—2 кг на 1 г расплава.
Длительность рафинирования устанавливается в зависимости от марки сплава, степени загрязненности сплава и от емкости расплава в ковше. Например, процесс рафинирования в трехтонном ковше длится 3—4 мин для алюминия и 5—6 мин для дюралюминия.
После рафинирования расплав выстаивается в течение 5 мин и очищается от шлака.
После рафинирования (в печи или ковше) расплав переливают в миксер с помощью сифона.
Затем может проводится модифицирование.
Деформируемые алюминиевые сплавы модифицируют методом введения в расплав соответствующих добавок тугоплавких металлов (Ta,Ti, Zr, В, V) в небольших количествах.
Модифицирующие добавки вводят в расплав в виде лигатур алюминий — модификатор, содержащие 3—10% модификатора.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
 | |
|