 |
Реклама. ООО ГК "Велунд Сталь" ИНН 9725035180 Erid: 2SDnjdphxRi
|  |
Марка: 1201 |
Класс: Алюминиевый деформируемый сплав |
Использование в промышленности: для изготовления сварных изделий, работающих работающих при температурах до -253 град. |
Химический состав в % сплава 1201 |
Mn |
0,2 - 0,4 |
 |
V |
0,05 - 0,15 |
Ti |
0,02 - 0,1 |
Al |
92,3 - 93,83 |
Cu |
5,8 - 6,8 |
Zr |
0,1 - 0,25 |
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
1201 труба, лента, проволока, лист, круг 1201
Свойства и полезная информация: |
Свариваемость материала: без ограничений. |
Механические свойства сплава 1201 при Т=20oС |
Прокат |
Размер |
Напр. |
σв(МПа) |
sT (МПа) |
δ5 (%) |
ψ % |
KCU (кДж / м2) |
Лист |
|
|
440 |
350 |
8 |
|
|
Коррозионная стойкость сплава 1201: сплавы системы А1-Сu (Д20, 1201) находятся в фазовой области а+CuA12(θ) и в отличие от сплавов системы А1-Сu-Mg практически не подвергаются естественному старению.
Сопротивление коррозионному растрескиванию сплавов со структурой а+θ регулируется путем выбора оптимальных режимов искусственного старения. Кроме того, применение после закалки правки (холодная деформация 1,5-3%) также существенно повышает сопротивление межкристиллитной коррозии и коррозионному растрескиванию за счет эффекта ТМО. Этот эффект усиливается в случае увеличения степени холодной деформации до 4-6 %.
Положительное влияние деформации можно связать с изменением характера выделений при старении. Наименьшее сопротивление коррозионному растрескиванию соответствует структуре с плотным распределением частиц метастабильной θ"-фазы и наличием зон свободных от выделений. Преобразование этих выделений в выделения другой метастабильной θ`-фазы, которые, по-видимому, не срезаются дислокациями, обусловливает повышение сопротивления коррозионному растрескиванию.
Метастабильная θ`-фаза выделяется главным образом на дефектах кристаллической решетки, в том числе и на дислокациях. Поэтому деформация после закалки и последующее искусственное старение ускоряют зарождение этих частиц, которые закрепляют дислокации и, таким образом, способствуют получению структуры с высокой плотностью дислокаций и частиц θ`-фазы. В результате удается получать повышенные уровни значений механической прочности и сопротивления КР. Прочностные характеристики можно существенно повысить, применяя НТМО (табл. 47).

Схема и величина горячей деформации при производстве полуфабрикатов, в частности, плит, слабо влияют на их свойства. Наиболее высокое сопротивление КР имеют плиты, полученные по традиционной технологии- прокаткой плоского слитка.
Сплав 1201 относится к группе свариваемых сплавов и его можно применять в изделиях криогенной техники. Свойства сварных соединений в значительной степени оределяются режимами термической обработки. Старение на первой ступени ниже, а на второй выше критической температуры перехода θ"→θ` обеспечивает относительно высокий уровень сопротивления КР. Для сплава 1201 значение tк=210°С.
Сварные соединения в этом случае не разрушаются в течение 45 сут испытаний при напряжении 180 МПа. Однако следует иметь в виду, что независимо от условий старения в околошовной зоне и литой части шва наблюдается довольно значительная межкристаллитная коррозия.
Сплав Д20 отличается от сплава 1201 тем, что вместо циркония и ванадия содержит марганец. Особенностью этого сплава является то, что коррозионные свойства основного металла и сварных соединений зависят от концентрации марганца. При содержании в сплаве марганца порядка 0,6-0,7 % полуфабрикаты и их сварные соединения из сплава Д20 не только не уступают, а даже несколько превосходят полуфабрикаты из сплава 1201.
Краткие обозначения: |
σв |
- временное сопротивление разрыву (предел прочности при растяжении), МПа
|
|
ε |
- относительная осадка при появлении первой трещины, % |
σ0,05 |
- предел упругости, МПа
|
|
Jк |
- предел прочности при кручении, максимальное касательное напряжение, МПа
|
σ0,2 |
- предел текучести условный, МПа
|
|
σизг |
- предел прочности при изгибе, МПа |
δ5,δ4,δ10 |
- относительное удлинение после разрыва, %
|
|
σ-1 |
- предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа |
σсж0,05 и σсж |
- предел текучести при сжатии, МПа
|
|
J-1 |
- предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа |
ν |
- относительный сдвиг, %
|
|
n |
- количество циклов нагружения |
sв |
- предел кратковременной прочности, МПа |
|
R и ρ |
- удельное электросопротивление, Ом·м |
ψ |
- относительное сужение, %
|
|
E |
- модуль упругости нормальный, ГПа |
KCU и KCV |
- ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 |
|
T |
- температура, при которой получены свойства, Град |
sT |
- предел пропорциональности (предел текучести для остаточной деформации), МПа |
|
l и λ |
- коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) |
HB |
- твердость по Бринеллю
|
|
C |
- удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] |
HV
|
- твердость по Виккерсу |
|
pn и r |
- плотность кг/м3 |
HRCэ
|
- твердость по Роквеллу, шкала С
|
|
а |
- коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С |
HRB |
- твердость по Роквеллу, шкала В
|
|
σtТ |
- предел длительной прочности, МПа |
HSD
|
- твердость по Шору |
|
G |
- модуль упругости при сдвиге кручением, ГПа |
 |
|