 |
Реклама. ООО ГК "Велунд Сталь СЗ" ИНН 7813653802 Erid: 2SDnjeTme6H
|  |
Используя полученное значение Sтшах и ранее построенные графики vЭхо —SТ; U—ST; рB—ST, определяем оптимальные режимы ЭХО с некорректированным ЭИ.
Произведем расчет режимов ЭХО и распределения МЭЗ для получения заданного профиля. Материал заготовки — сталь 20 X13, допустимая погрешность обработки б = 0,5 мм, шероховатость поверхности Ra=2,5 мкм.
Для данного контура точки F, А, В, С, D, Е и G имеют угол а=0, причем локальный минимум контура достигается в точках A, D, Е. В соответствии с этим разбиваем обрабатываемый контур на четыре участка AF, АВ, DC, EG (рис. 6, б). На участках ВС и DE а — О, поэтому во всех точках этих участков межэлектродный зазор постоянен и равен ST. На каждом участке задаем расчетные точки, данные о которых заносим в табл.
Используя справочную литературу, выбираем состав электролита и определяем значение параметров обработки.
Для стали 20X13 рекомендуется использовать 15%-ный водный раствор NaCl; выход по току n составляет 0,74, а максимальная температура электролита Т — 323 К. Удельная электрическая проводимость электролита Hо=15 См/м. Для обработки заготовки размером 200X100X80 мм выбираем станок 4421, обеспечивающий рабочее напряжение до 24 В и максимальное давление электролита 1,8 МПа.
Электрохимический эквивалент и плотность стали 20X13
e = 2,8.10-4 г/(А-с); y=7,8.10-3 г/мм3.
Направление подачи электролита перпендикулярно плоскости чертежа (рис. 6), длина МЭП равна 50 мм.
Начальную температуру электролита принимаем равной Т== = 293 К. Расчет режимов обработки производят при следующих значениях ST: ST={0,1; 0,3; 0,5; 0,7; 0,9} мм.
Результаты расчета представлены в виде графиков (рис. 7).
Так как максимальное напряжение источника питания 24 В, то максимальная производительность обработки достигается при следующих режимах: ST=0,43 мм; U = 24 В; />„=520000 Па;
t,«Xq р 0,74-2.8-10-4-0,015 К7 w . .
V3X0max = -1^LV3X0=-? g [()_3-Ь7 MM/CJ
"^ЭХО max = 2,6696-Ю-2 ММ/С^1,6 ММ/МИН.
Чтобы проверить при найденных оптимальных режимах ЭХО ограничения по точности обработки, вводим в память микро-ЭВМ программу расчета распределения межэлектродных зазоров.
Исходные данные берем из табл. 8. В нее же записываем результаты расчета.
Полученное распределение межэлектродных зазоров может быть использовано для определения коррекции электрода-инструмента, если значение Д>6 и обработку планируется вести корректированным катодом. Профиль корректированного катода строится следующим образом.
В расчетных точках откладывают по нормали к контуру величины МЭЗ. Полученные точки соединяются плавной линией, которая и представляет собой профиль корректированного катода-инструмента.
Трудоемкость изготовления корректированного ЭИ часто значительно выше трудоемкости изготовления некорректиро-ванного ЭИ. Поэтому для окончательного выбора схемы обработки необходимо сравнить максимальные производительности этих двух схем.
Определение оптимальных режимов ЭХО для схемы с некор-ректированным ЭИ заключается в расчете величины STmax, т. е. такого значения (максимального значения) ST, при котором будет обеспечена заданная точность обработки и последующего
определения по ранее построенным графикам соответствующих оптимальных режимов обработки.
Алгоритм определения STmax следующий.
1. Задать начальное значение ST.
2. Провести расчет распределения МЭЗ.
3. Если получаем A>б, то уменьшаем ST на величину бST = = 0,2 мм, если A<б, то увеличиваем ST на бST = 0,2 мм.
4. Производим расчет Д при новом значении So. Если характер соотношения Ф и б не изменялся, т. е. A>б или A<б, то аналогично п. 3 изменяем ST на величину бST и снова проводим расчет A. Эти действия циклически повторяются до тех пор, пока не изменится характер отношения, т. е. вместо A>б станет A<б, и наоборот.
5. Производим последовательно расчеты A при различных значениях ST, причем каждый раз шаг изменения бST делим пополам. Этот пункт выполняется до тех пор, пока величина бST станет меньше, чем 0,05 мм.
6. Полученное значение SТ и представляет собой максимально допустимое значение STmax по точности обработки, т. е. STmax.
В рассматриваемом примере максимальная погрешность имеет место на четвертом участке EG. Ее значение в шестой расчетной точке равно 1,8324672 мм, что значительно больше допуска (б = 0,5 мм). Таким образом, при SТ=0,43 мм обработку необходимо производить с использованием корректированного ЭИ.
Оценим возможность обработки некоррелированным электродом, т. е. найдем величину STmax. Причем расчет будем проводить только для одного четвертого участка, который является лимитирующим по точности обработки. Зададим SТ = 0,1 мм и произведем расчет A.
Максимальное значение погрешности 0,47390007<б, поэтому увеличиваем SТ до 0,15 мм и снова проведем расчет. При этом получаем, что максимальное значение погрешности равно 0,70448257. Таким образом, уСТаНОВЛеНО, ЧТО STmax ~ 0,1 мм. Используя результаты расчета, определяем, что при ST = 0,1 мм
Vэхоmax=0,12378 мм/мин.
Полученное значение скорости обработки (0,12378 мм/мин) почти в 10 раз меньше соответствующей скорости при обработке с корректированным катодом (1,6 мм/мин) и сопоставимо с производительностью импульсно-циклических схем ЭХО. Таким образом, результаты расчета позволяют сделать вывод, что в данном случае целесообразно использовать схему ЭХО с корректированным электродом или же применять импульсно-циклические схемы электрохимической обработки.
КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ИНСТРУМЕНТОВ ДЛЯ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ
Инструменты для размерной УЗО могут присоединяться к концентратору-волноводу неразъемным (например, пайкой) или разъемным способом (например, резьбовым соединением).
Часто функции инструмента выполняет концентратор-волновод, т. е. УЗО осуществляется нижней частью концентратора-волновода, которую выполняют необходимой формы.
По технологическому назначению различают инструменты для обработки одной детали и инструменты для обработки нескольких заготовок или нескольких элементов одной заготовки.
Концентраторы-волноводы и их расчет. Концентраторы-волноводы служат для передачи ультразвуковой энергии от преобразователя к инструменту с трансформацией колебаний малой
|