|
Реклама. ООО "ГК "Велунд Сталь НН" ИНН 5262389270 Erid: 2SDnjdZde8T
| |
ЗАЩИТА ОТ КОРРОЗИИ ПУТЕМ ФОРМИРОВАНИЯ ТОНКОЙ СТРУКТУРЫ
Для малолегированных сплавов, как было указано в п. 1, гл. IV, наличие анизотропии способствует повышению коррозионной стойкости, в частности сопротивления питтинговой коррозии.
Анализ экспериментальных данных и результатов эксплуатации деталей из алюминиевых сплавов показывает, что положительное влияние коррозионной анизотропии наблюдается и для высоколегированных сплавов. Так, если полуфабрикат или деталь из сплава В95 имеет равноосные полиэдрические зерна, то в естественно состаренном состоянии или в состоянии Т1 независимо от направления вырезки образцов сопротивление КР будет достаточно низким.
Появление анизотропии, обусловленной ориентировкой границ зерен или волокон в направлении деформации, мало изменяет сопротивление КР в высотном направлении. В то же время стойкость в поперечном и особенно в долевом направлениях значительно возрастает. Следовательно, появление анизотропии сопротивления коррозионному растрескиванию по существу связано не с уменьшением стойкости в высотном направлении, а с увеличением ее в двух других направлениях. Это обстоятельство позволяет в ряде случаев обеспечивать надежную эксплуатацию тонкостенных полуфабрикатов, не используя более сложные методы защиты и без понижения уровня механических свойств. Для полуфабрикатов с большой толщиной стенки этот метод защиты может быть реализован в результате создания необходимого направления волокна. Это хорошо видно на примере анализа данных по определению сопротивления КР по сечению крупногабаритного полуфабриката. Периферийный образец является высотным только в геометрическом понимании, по отношению к направлению волокна он является поперечно-продольным. Соответственно время до разрушения образцов, вырезанных из периферийных зон, значительно возрастает. В этой связи полезным может оказаться и сохранение у полуфабрикатов поверхностного слоя.
Однако одним из самых координатных методов защиты анизотропных полуфабрикатов из высокопрочных сплавов является подбор соответствующих режимов искусственного старения.
Из экспериментов следует, что, устраняя одну из основных причин анизотропии КР - ориентацию границ зерен, - можно получить полуфабрикаты со свойствами, близкими к свойствам в высотном направлении независимо от ориентировки. Однако в зависимости от характера выделений в матрице они могут быть равнонизкими или равновысокими во всех направлениях. Поэтому проблема устранения чувствительности к КР заключается пo существу в применении структурно-регламентированного старения.
Понятие «структурно-регламентированное старение» включает в себя несколько основных положений. Прежде всего это получение структуры с определенным видом выделений. Речь идет о степени потери когерентных связей, которая может различаться в зависимости от состава сплава (рис. 39). Так, из сопоставления сплавов типа В95 и Д20 видно, что если для первого необходимо значительное перестаривание для достижения высокого значения сопротивления КР, то для второго сплава этот уровень достигается на «восходящей» стадии старения, когда еще не достигается максимум прочности (см. рис. 32). Другой пример приведен на рис. 40 для серийных сплавов В95пч, Д16 и АК4-1. Видно, что для сплавов В95пч требуется значительное перестаривание, для Д16 - относительно малое, а для АК4-1 область высокого сопротивления КР совпадает с максимумом прочности.
Второе важное положение - ограничение степени состаренности сплава. В том случае, когда выделяются стабильные фазы и коагуляция частиц достигает предела, начинается ухудшение сопротивления расслаивающей
коррозии (см. рис. 35). Для изучения этого явления проводили исследование на прессованных полосах из модельного сплава А1-4 % Си и стандартного Д16. Изучали влияние режимов термообработки в интервале 200- 450 °С при выдержках 2 и 24 ч на сопротивление РСК, КР при заданной растягивающей нагрузке и на механические свойства.
Структуру изучали в оптическом и электронном микроскопах. Результаты испытаний показали, что для сплава А1-4 % Сu первоначальный рост сопротивления КР и РСК (рис. 41) в интервале температур 200-300 °С связан с формированием частично когерентной фазы θ` (рис. 42, а).
Дальнейшее повышение температуры приводит к потере когерентности, образованию θ-фазы и ее коагуляции (рис. 42, б). Коагуляция этой фазы и является основным структурным фактором, приводящим к повторному снижению сопротивления КР и РСК в интервале температур 300-450°С. В сплаве Д16 происходит не только коагуляция фазы в матрице, но и значительная коагуляция по границам зерен (рис. 42, г). В этом случае влияние электрохимических факторов на развитие РСК возрастает. Однако и в этом случае решающее влияние на сопротивление КР оказывает выделение частично когерентной фазы S` в матрице. Увеличение σkp сопровождается ростом объемной доли фазы S`, электропроводности и прочности (рис. 42). Однако максимальное значение σкр достигается (см. рис. 39) в области некоторого разупрочнения и совпадает с интервалом значений электропроводности 22-24 МСм/м. Повышение пластичности, как и следовало ожидать при коагуляции, наблюдается при повторном снижении значений σкр.
Третий фактор - соотношение температуры старения (tc) и критической температуры растворимости (tк) зон ГП. Для сплавов систем Al-Zn-Mg и Al-Zn-Mg-Сu обязательно должно выполняться условие tc>tK, иначе стабилизация сопротивления КР практически невозможна. Это связано с довольно низкой скоростью старения этих сплавов при tcK и соответственно с наличием в структуре значительного количества зон ГП и метастабильных когерентных выделений. Для сплавов систем А1-Сu и А1-Сu-Mg значительный эффект может быть достигнут и при температуре несколько ниже критической.
Используя режимы структурно-регламентированного старения, можно увеличить не только время до разрушения, но и, что самое главное, параметры σкр (рис. 43), КIKP (рис. 44) и сопротивление расслаивающей коррозии (см. рис. 35).
Из данных, приведенных на рис. 44, следует, что в нестойком состоянии Т1 сопротивление КР уменьшается при увеличении толщины плиты. Это связано с изменением степени деформации при прокатке и степени прокаливаемости. Однако за счет структурно-регламентированного искусственного старения различие в коррозионной стойкости под напряжением плит, изготовленных по разным технологическим схемам, можно устранить.
На практике используют также смягчающее старение, или, что точнее, перестаривание. Соответственно с этим введены режимы частичного (Т2 или Т76 по терминологии США) и более полного (Т3 или соответственно Т73) перестаривания. Однако из изложенного выше следует, что эти режимы относятся в полной мере лишь к сплавам системы Al-Zn-Mg-Сu, например, к сплаву В95, и являются частным случаем структурно-регламентированного старения. Для сплавов типа дуралюмин можно обеспечить высокое сопротивление КР и РСК в состоянии Т1 (Д20; 1201, АК4-1, ВД17) или T1, Т2 (Д16, 1163). Таким образом, состояние Т3, т. е. значительное перестаривание с существенным снижением прочности для большинства конструкционных алюминиевых сплавов не требуется. Более того оно может понижать сопротивление КР при коагуляции упрочняющих фаз.
В свете представлений о дислокационно-электрохимическом механизме КР можно предположить, что при уменьшении количества выделений при коагуляции меньшее число дислокаций будет на них задерживаться. Одновременное увеличение расстояния между частицами будет способствовать проскакиванию дислокаций между ними. Таким образом, вновь появляется возможность образования линейных дислокационных скоплений у границ зерен.
Понижение сопротивления РСК не всегда в полной мере проявляется при коагуляции из-за возможного транскристаллитного механизма развития трещин. Это может иметь место в таких сплавах как В95. В сплавах типа Д16 коагуляция граничных выделений способствует переходу к межкристаллитной форме разрушения. Поэтому в полной мере проявляется отрицательный эффект коагуляции фаз. |