Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Марки стали и сплавы -> Титан сплав и марки -> Титан ВТ6

Титан ВТ6

Марка: ВТ6 Класс: Титановый деформируемый сплав
Использование в промышленности: штампосварные детали, длительно работающие при температуре 400-450° ; класс по структуре α+β

 

Химический состав в % сплава ВТ6
Fe до 0,3 Диаграмма химического состава сплава ВТ6
C до 0,1
Si до 0,15
V 3,5 - 5,3
N до 0,05
Ti 86,485 - 91,2
Al 5,3 - 6,8
Zr до 0,3
O до 0,2
H до 0,015

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
ВТ6 труба, лента, проволока, лист, круг ВТ6

 

Свойства и полезная информация:
Термообработка: Закалка и старение
Твердость материала: HB 10 -1 = 293 - 361 МПа
Свариваемость материала: без ограничений.

 

Механические свойства сплава ВТ6 при Т=20oС
Прокат Размер Напр. σв(МПа) sT (МПа) δ5 (%) ψ % KCU (кДж / м2)
Пруток     900-1100   8-20 20-45 400
Пруток     1100-1250   6 20 300
Штамповка     950-1100   10-13 35-60 400-800

 

Физические свойства сплава ВТ6
T (Град) E 10- 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м3) C (Дж/(кг·град)) R 10 9 (Ом·м)
20 1.15   8.37 4430   1600
100   8.4 9.21     1820
200   8.7 10.88   0.586 2020
300   9 11.7   0.67 2120
400   10 12.56   0.712 2140
500     13.82   0.795  
600     15.49   0.879  

 

Особенности термообработки титана ВТ6 (и близких по составу ВТ14 и т.д.): термическая обработка является основным средством изменения структуры титановых сплавов и достижения комплекса механических свойств, необходимых при эксплуатации изделий. Обеспечивая высокую прочность при достаточной пластичности и вязкости, а также стабильность этих свойств в процессе эксплуатации, термическая обработка имеет не меньшее значение, чем легирование.

Основными видами термической обработки титановых сплавов являются: отжиг, закалка и старение. Находят применение также термомеханические методы обработки.

В зависимости от температурных условий отжиг титановых сплавов может сопровождаться фазовыми превращениями (отжиг с фазовой перекристаллизацией в области выше а→в - превращения) и может протекать без фазовых превращений (например, рекристаллизационный отжиг ниже температур а→в-превращения). Рекристаллизационный отжиг титана и его сплавов приводит к разупрочнению или устранению внутренних напряжений, что может сопровождаться изменением механических свойств. Легирующие добавки и примеси - газы существенно влияют на температуру рекристаллизации титана (рис. 1). Как видно из рисунка, температуру рекристаллизации в наибольшей степени повышают углерод, кислород, алюминий, бериллий, бор, рений и азот. Некоторые из элементов (хром, ванадий, железо, марганец, олово) действуют эффективно при введении их в относительно больших количествах - не менее 3%. Неодинаковое влияние указанных элементов объясняется разным характером их химического взаимодействия с титаном, различием в атомных радиусах и структурным состоянием сплавов.

Отжиг особенно эффективен для структурно нестабильных, а также деформированных титановых сплавов. Прочность двухфазных а+в-сплавов титана в отожженном состоянии не является простой суммой прочности а- и в-фаз, а зависит и от гетерогенности структуры. Максимальной прочностью в отожженном состоянии обладают сплавы с наиболее гетерогенной структурой, содержащие примерно одинаковое количество а- и в-фаз, что связано с измельчением микроструктуры. Отжиг позволяет улучшить пластические характеристики и технологические свойства сплавов (табл. 4).

Неполный (низкий) отжиг применяют с целью устранения только внутренних напряжений, образовавшихся в результате сварки, механической обработки, листовой штамповки и др.

Помимо рекристаллизации в сплавах титана могут происходить и другие превращения, которые приводят к изменению конечных структур. Важнейшими из них являются:

а) мартенситное превращение в-твердого раствора;

б) изотермическое превращение в-твердого раствора;

в) эвтектоидное или перитектоидное превращение в-твердого раствора с образованием интерметаллидных фаз;

г) изотермическое превращение нестабильного а-твердого раствора (например, а` в а+в).

Упрочняющая термическая обработка возможна лишь при условии содержания в сплаве в-стабилизирующих элементов. Она заключается в закалке сплава и последующем старении. Свойства титанового сплава, получаемые в результате термической обработки, зависят от состава и количества метастабильной в-фазы, сохраняющейся при закалке, а также типа, количества и распределения продуктов распада, образующихся в процессе старения. На стабильность в-фазы существенное влияние оказывают примеси внедрения - газы. По данным И. С. Полькина и О. В. Каспаровой азот снижает стабильность в-фазы, изменяет кинетику распада и конечные свойства, повышает температуру рекристаллизации. Также действует кислород, однако азот оказывает более сильное влияние, чем кислород. Например, по влиянию на кинетику распада в-фазы в сплаве ВТ15 содержание 0,1% N2 эквивалентно 0,53% 02, а 0,01% N2 - 0,2% О2. Азот, как и кислород, подавляет процесс образования ω-фазы.

М. А. Никаноровым и Г. П. Дыковой сделано предположение о том, что увеличение содержания 02 интенсифицирует распад в-фазы благодаря его взаимодействию с вакансиями закалки в-твердого раствора. Это, в свою очередь, создает условия для появления а-фазы.

Водород стабилизирует в-фазу, увеличивает количество остаточной в-фазы в закаленных сплавах, повышает эффект старения сплавов, закаленных из в-области, понижает температуру нагрева под закалку, обеспечивающую максимальный эффект старения.

В а + в- и в-сплавах водород влияет на интерметаллидный распад, приводит к образованию гидридов и потере пластичности в-фазы при старении. Водород в основном концентрируется в в-фазе.

Ф. Л. Локшин, изучая фазовые превращения при закалке двухфазных титановых сплавов, получил зависимости структуры после закалки из в-области и концентрацией электронов.

Сплавы ВТ6С, ВТ6, ВТ8, ВТЗ-1 и ВТ14 имеют среднюю концентрацию электронов на атом 3,91-4,0. Эти сплавы после закалки из в-области имеют структуру а`. При концентрации электронов 4,03-4,07 после закалки фиксируется а"-фаза. Сплавы ВТ 15 и ВТ22 с концентрацией электронов 4,19 после закалки из в-области имеют структурув-фазы.

Свойства закаленного сплава, а также процессы последующего упрочнения его при старении в значительной мере обусловливаются температурой закалки. При данной неизменной температуре старения с ростом температуры закалки Tзак в (а + в)-области повышается прочность сплава и падают его пластичность и вязкость. При переходе Tзак в область в-фазы понижается прочность без повышения пластичности и вязкости. Это происходит вследствие роста зерен.

С. Г. Федотов и др. на примере многокомпонентного а + в-сплава (7% Мо; 4% А1; 4% V; 0,6% Сr; 0,6% Fe) показали, что при закалке из в-области образуется грубоигольчатая структура, сопровождающаяся понижением пластичности сплава. Чтобы избежать это явление, для двухфазных сплавов температуру закалки принимают в пределах области а + в-фаз. Во многих случаях эти температуры находятся на границе или вблизи перехода а + в→в. Важной характеристикой титановых сплавов является их прокаливаемость.

С. Г. Глазуновым определены количественные характеристики прокаливаемости ряда титановых сплавов. Например, плиты из сплавов ВТЗ-1, ВТ8, ВТ6 прокаливаются насквозь при толщине до 45 мм, а плиты из сплавов ВТ14 и ВТ16 - при толщине до 60 мм; листы из сплава ВТ15 прокаливаются при любой толщине.

В последние годы исследователями выполнены работы по изысканию оптимальных практических методов и режимов упрочняющей термической обработки промышленных титановых сплавов. Установлено, что после закалки двухфазных сплавов ВТ6, ВТ14, ВТ16 предел прочности и предел текучести их понижаются. Близкую к ним прочность имеет после закалки и сплав ВТ15 (σв=90-100 кгс/мм2).

 

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
  ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
  Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
  σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
  σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
  J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
  n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
  E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
  C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
  а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
  σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

14:20 Карданный Вал

13:51 Куплю строительные бытовки б/у

13:40 Закупаем металлопрокат

13:32 ГидроЦилиндры

12:33 Круг титан ВТ20 180х320мм

20:12 Полиэтиленовые водопроводные трубы

20:10 Полиэтиленовые трубы для газоснабжения

20:08 Трубы полипропиленовые гофрированные для наружной и ливневой канализа

20:04 ПВХ трубы для наружной и внутренней канализации

20:01 ПВХ трубы под клей

НОВОСТИ

9 Декабря 2018 17:18
Самодельная струбцина для сварки труб под прямым углом

11 Декабря 2018 12:21
Выпуск стали в США за первую неделю декабря упал на 0,8%

11 Декабря 2018 11:35
”Московский коксогазовый завод” начал поставки кокса в Индию

11 Декабря 2018 10:49
Новые этапы в строительстве современного центра тяжелого машиностроения ”ОКБ МИКРОН”

11 Декабря 2018 09:01
На шахте ”Распадская” установили рекорд добычи угля за ноябрь

11 Декабря 2018 08:10
АО ”ЕЗ ОЦМ” расширило географию экспорта до 33 стран в 2018 году

НОВЫЕ СТАТЬИ

Основные типы замков для входных дверей

Дома из бруса их преимущества и особенности

Современные зажигалки - виды и применение

Основные аспекты приема на работу иностранных граждан

Модульные здания для строительных площадок

Выкуп грузовых авто

Промышленные химические реагенты для гальваники

Виды складских стеллажных систем

На что обращать внимание при выборе входной двери

Промышленные комплектующие для водоснабжения

Особенности выкупа грузовиков и грузовой техники

Латунь: особенности и стоимость приема сплава

Особенности применения алюминиевых плит и листов

Поиск и выбор квартир с использованием мобильных приложений

Значимые аспекты в деле выбора жилья

Сталь конструкционная углеродистая

Сталь конструкционная низколегированная

Лист нержавеющий AISI 409 - особенности марки и применение

ПАРТНЕРЫ

Рекомендуем приобрести металлопрокат в СПб от компании РДМ.

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2018 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.