Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Защита от коррозии металла, гальваника, ЭХО -> Коррозия сталей -> Коррозия сталей

Коррозия сталей

Оглавление статьи Страницы статьи:  1  2  3  4  ...  9  10  11  ...  18  19  20 

зом, область полного пассивирования (вертикальный участок поляризационной кривой) здесь отсутствует.

Далее на поляризационных кривых при этих концентрациях хлор-ионов наблюдается область резкого увеличения тока — область а—в, соответствующая переходу образца из пассивного состояния в активное. Точки а1—а4 относятся к начальному моменту образования питтинга, когда поверхность микроанода только начинает активироваться. Участки кривых а—в (с соответствующими индексами) относятся к процессу расширения пло

щади питтинга на весь образец. После точки в1 (или соответственно

в2 ,в3, в4 ) вся поверхность образца активирована и площадь пит

тинга делается постоянной, равной поверхности искусственного питтинга. Анодная поляризуемость (наклон кривых) после точки в довольно хорошо укладывается в линейную зависимость логарифма плотности тока от потенциала анода.

Для более высокого содержания соляной кислоты — IN концентрации (кривая 6), а также чистого 1,5 N раствора HG1 (кривая 7) предельные токи пассивирования (iп), после которых наступала бы пассивация со снижением тока, вовсе не наблюдаются. Для этих кривых при потенциале около нуля начинается отклонение от логарифмической зависимости, что связано с частичным пассивированием. Точки а3 и а4 соответствуют достижению максимальной пассивности образца в данных условиях. Образование питтинга в этих достаточно агрессивных растворах начинается около +0,14 в (точки а3 и а4) и уже заметно не изменяется с увеличением содержания HG1. В данном случае значение потенциала

питтингообразования совпадает с потенциалом верхнего предела начала питтинговой коррозии по данным Улига и Щвенка.

При поляризации положительнее точек в3 и в4 достигается область, в которой, так же как и для предыдущих растворов, наблюдается линейная зависимость логарифма плотности тока от потенциала. Наклон поляризационных кривых на участках в—с характеризует большую величину перенапряжения анодного растворения электрода в этой области по сравнению с величиной перенапряжения анодного растворения в области отрицательных потенциалов (до потенциала 0 в). Поэтому можно полагать, что на этом участке анодное растворение идет не путем непосредственного образования ионов металла низшей валентности, а через промежуточный процесс образования окисной пленки и последующего ее химического растворения. Однако в отличие от вертикальных участков пассивного состояния основной тормозящей ступенью на участках в—с является не процесс химического растворения окисной пленки в кислоте, а электрохимический процесс анодного образования окисной пленки. Таким образом, при значительном содержании хлор-ионов наступление окисной пассивности не приводит к устойчивому пассивному состоянию, но фиксируется лишь как увеличение анодной поляризуемости по достижении потенциалов, соответствующих потенциалу полного пассивирования.

Наклон прямых в области анодного растворения при положительных потенциалах с увеличением концентрации хлор-ионов выше 0,5 N практически не меняется. Это подтверждает предположение о том, что торможение анодного процесса на этом участке определяется не химическим растворением пленки и не диффузионным торможением, а перенапряжением процесса образования окис-ного соединения на поверхности анода.

Влияние дополнительных легирующих элементов на анодное растворение стали 18 Сг—14 Ni

Исследование влияния легирующих элементов на характер и скорость анодного растворения стали 18 Сг—14 Ni проводилось в 1,5 N растворе НС1, являющемся более агрессивным по сравнению с сернокислотными растворами. Анодные поляризационные кривые, полученные аналогичным методом для стали 18 Сг—14 Ni, а также для подобных сталей, но дополнительно легированных V, Si, Mo или Re, представлены на рис. 5. Анализ этих кривых позволяет сделать следующие выводы.

На участке активного анодного растворения при отрицательных потенциалах для всех сталей наблюдается линейная зависимость логарифма плотности тока от потенциала (с наклоном, равным 75 мв). Это указывает на то, что дополнительные легирующие компоненты стали (V, Si, Mo или Re) не изменяют при

роды активного анодного процесса. По-видимому, основным анодным процессом для всех сталей является процесс анодного растворения с образованием ионов металла низшей валентности. Перенапряжение этого процесса, т. е. величина потенциала при одной и той же плотности тока, возрастает при дополнительном легировании в следующей последовательности: V, Si, Mo, Re. Таким образом, дополнительное легирование тормозит анодный процесс растворения нержавеющей стали (особенно это относится к легированию Мо и Re).

Необходимо отметить, что на всех полученных кривых отклонение от линейной тафелевской зависимости начинается при одном и том же потенциале — около — 0,006 в (рис. 5, уровень MN). Этот уровень следует рассматривать как термодинамически возможный потенциал образования защитной окисной пленки. При менее агрессивных условиях, как это наблюдается для стали 18 Сг—14 Ni в 1,5 N растворе H2S04 (см. рис. 3, кривая 1), по достижении данного потенциала происходит процесс анодного пассивирования и снижение анодного тока. Полученное постоянство термодинамически возможного потенциала начала окисления всех исследованных сталей указывает на то, что влияние легирующих элементов на торможение анодного процесса в первую очередь связано не с термодинамическими, а с кинетическими факторами.

Скорости анодного процесса для всех сталей при этом потенциале (—0,006 в) представлены в табл. 2 (iMN). Из таблицы следует, что наиболее эффективно тормозится анодное растворение нержавеющей стали в соляной кислоте присадками Мо или Re. Ниже потенциала на уровне MN для всех сталей наблюдается частичное пассивирование, проявляемое в отклонении кривой от логарифмической зависимости. В этих условиях способность дополнительно легированных сталей к пассивированию выявляется более отчетливо, чем у стали 18 Сг—14 Ni. Об этом свидетельствуют более крутой ход кривых дополнительно легированных сталей ниже потенциала на уровне MN. Точки перегиба а1—а5, лежащие для разных сталей при одном и том же потенциале, соответствуют достижению максимальной пассивности образца в данных условиях. После точки а наблюдается более быстрое возрастание анодного тока, указывающее на достижение процесса анодного активирования, вызванного образованием питтинга. Вследствие высокой активности коррозионной среды в данном случае потенциал питтингообразования достигается раньше, чем потенциал полной пассивации (Епп), и может непосредственно следовать за потенциалом начала пассивации и предшествовать потенциалу полной пассивации. Можно условно считать, что в таких случаях потенциал питтингообразования близко совпадает с потенциалом пассивирования. Постоянство точки а для всех сталей показывает, что дополнительное легирование вследствие высокой агрессивности среды не влияет на потенциал питтингообразования.

В точке в поверхность образца полностью активирована. Дополнительное легирование V, Si или Мо мало изменяет положение точки в, в то время как легирование рением снижает ее к более положительным потенциалам. Это указывает на то, что полное активирование стали анодным током в соляной кислоте при наличии в стали рения затрудняется. По достижении точки в на участке в—с наблюдается линейная зависимость логарифма плотности тока от потенциала для всех исследуемых сталей с наклоном, равным 750 мв. Торможение на этом участке мы связываем, как указывалось выше, с перенапряжением анодного процесса образования окисной пленки. Скорость анодного растворения дополнительно легированных сталей на этом участке (в—с) значительно меньше, чем у стали дополнительно нелегированной. Эффективность торможения анодного процесса дополнительными легирующими элементами увеличивается в порядке V, Si, Мо, Re. Таким образом, введение этих элементов в сталь заметно повышает перенапряжение анодного образования окисной пленки. Повышенное торможение скорости анодного процесса растворения дополнительно легированных сталей, возможно, определяется также образованием труднорастворимых солей дополнительных компонентов. В частности, в процессе анодного растворения стали, легированной молибденом, на ее поверхности может накапливаться МоС13,

Оглавление статьи Страницы статьи:  1  2  3  4  ...  9  10  11  ...  18  19  20 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.10.01   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:50 Заклепки алюминиевые ударные оптом

12:47 Продаются круги шх15 оптом.

10:48 Купим подшипники разные

08:49 Труба ТФ 89х7 НД-2-2-20 2У1

07:39 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

07:39 Сварочный генератор ГД 2х2503, генератор ГД 4004,

07:39 Дизельные электростанции АД 150

17:51 Металлорежущие станки плазменной и газовой резки

17:50 Проектирование и изготовление пресс-форм

17:11 Пресс-форма по образу или оригиналу изделия

НОВОСТИ

24 Марта 2017 17:16
Станки с ЧПУ для гибки проволоки в работе

22 Марта 2017 14:08
Необычные строения из алюминия в Японии (17 фото)

20 Марта 2017 23:31
Станки и оборудование специалисты смогут выбрать на выставке Mashex Siberia

24 Марта 2017 17:45
Алюминиевый Институт создаст новые материалы на основе алюминия и технологии их обработки

24 Марта 2017 16:07
Запасы готовой стали в Китае в начале марта выросли на 7,95%

24 Марта 2017 15:01
В трубопрессовом цехе ”КраМЗа” смонтирована установка для ”теплой” прокатки труб

24 Марта 2017 14:08
Мировой выпуск прямовосстановленного железа в феврале 2017 года вырос на 9,4%

24 Марта 2017 13:43
В 2017 году УК ”Кузбассразрезуголь” увеличит инвестиции в производство на 2 млрд. рублей

НОВЫЕ СТАТЬИ

Конструкция и особенности наиболее применяемых видов силовых трансформаторов

Основные виды натурального камня

Труба из нержавеющей стали: классификация и область применения

Разновидности труб из коррозионностойкой стали и их применение в бытовых и промышленных условиях

Труба нержавеющая 20Х23Н18 для химпрома

Труба нержавеющая в обеспечении комфортной работы предприятий

Купить металлопрокат в Тамбове

Что лучше: купить квартиру с отделкой или без отделки?

Технологии остекления балконов и цены в Киеве

Гравировка на металле: улучшаем офис для успеха в бизнесе

Кварцевый агломерат и виды искусственного камня

Теплый электрический пол для квартиры

Основные виды запчастей для автомобильного двигателя

Электрические защитные автоматы для квартиры

Распространенные сертификаты в промышленности

Использование трубы нержавеющей 12Х18Н10Т в машиностроении и других остраслях

Труба нержавеющая 10Х17Н13М2Т в отраслях промышленности

Труба нержавеющая 06ХН28МДТ в котельной промышленности

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.