Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Защита от коррозии металла, гальваника, ЭХО -> Коррозия сплавов титана и алюминия -> Коррозия сплавов титана и алюминия

Коррозия сплавов титана и алюминия

Оглавление статьи Страницы статьи:  1  2  3  ...  9  10  11  ...  18  19  20 

принятой методике. Поляризацию электродов осуществляли в течение 1 часа. Опыты проводили при +20° С. Коррозионные потери определяли весовым методом и затем пересчитывали на электрические единицы, прп этом полагали, что растворение титана происходит в виде Ti3+ . На всех приведенных в работе

рисунках отсчет потенциалов дан по отношению к нормальному водородному электроду.

На рис. 1 показана зависимость амплитудных значений потенциалов титана в 10 N растворе H2S04 в катодные и анодные полупериоды от амплитудной плотности фарадеевского тока для различных частот. Из рисунка видно, что по мере снижения частоты переменного тока поляризуемость электрода в катодный и анодный полупериоды увеличивается, что свидетельствует

о сильном торможении как катодного, так, и особенно, анодного процесса при низких частотах переменного тока. На основании этого можно предполагать, что скорость растворения титана под действием переменного тока при прочих равных условиях по мере увеличения частоты поляризующего тока будет возрастать.

Рис. 2 иллюстрирует зависимость скорости растворения (коррозии) титана в 10 N растворе H2S04 под действием переменного тока от амплитудной плотности фарадеевского тока для различных частот. Из данных, приведенных на рисунке, следует, что с возрастанием частоты переменного тока скорость растворения титана увеличивается. Кроме этого, для каждой из исследуемых частот с увеличением плотности фарадеевского тока скорость растворения титана растет, достигая предельного значения. Дальнейшее увеличение плотности фарадеевского тока не только не приводит к увеличению скорости растворения металла, но даже, вследствие пассивации электрода в анодный полупериод при низких частотах, уменьшает ее. Характерно, что величина предельного значения коррозионного тока с возрастанием частоты увеличивается. Так, при частоте 20 гц предельный ток коррозии составляет примерно 15 ма/см2, а при частоте 500 гц — 200 ма/см2. При частотах же 1000 и 2000 гц предельный ток коррозии в области исследованных плотностей накладываемого на электрод переменного тока еще не достигается. Следует отметить, что предельный ток пассивации на титане в 10 N растворе H2S04 при поляризации его постоянным током составляет 0,5 ма/см2, т. е. на 2—3 порядка ниже, чем при поляризации переменным током.

Таким образом, если при коррозии железа в кислых растворах по мере возрастания частоты прп данной плотности фарадеевского тока происходит уменьшение скорости растворения железа, то в случае титана увеличение частоты при заданной плотности фарадеевского тока сопровождается, наоборот, возрастанием скорости коррозии.

Необходимо отметить еще одно существенное различие в коррозионном поведении железа и титана в условиях поляризации их переменным током. При коррозии железа в кислых растворах, при заданной частоте с увеличением плотности фарадеевского тока величина коррозионного тока возрастает как по абсолютному значению, так и по отношению к общему току, расходующемуся на электрохимические процессы. Иными словами, процент выхода железа в раствор по мере возрастания плотности фарадеевского тока при всех частотах увеличивается. Совсем иное положение наблюдается при коррозии титана в серной кислоте. Из данных, приведенных на рис. 2, следует, что с увеличением плотности фарадеевского тока величина коррозионного тока для всех частот возрастает, достигая предельного значения. Относительная же доля коррозионного

тока в общем фарадеевском токе при увеличении плотности последнего для всех частот уменьшается, что становится особенно заметным по достижении предельных значении коррозионного тока. Действительно, при низких плотностях фарадеевского тока все кривые, приведенные на рис. 2, вплотную подходят к теоретической прямой, а с увеличением плотности фарадеевского тока они все больше отступают от нее, что указывает на то, что процент выхода титана в раствор в этом случае уменьшается.

Причиной возрастающего с увеличением плотности фарадеевского тока несоответствия между коррозионным и фарадеевским токами при поляризации титана переменным током в серной кислоте является, по нашему мнению, то, что в анодный полупериод тока наряду с протеканием реакции ионизации металла возможно одновременное протекание и других реакций.

Рассмотрим реакции, которые возможны на поверхности титана при поляризации его переменным током в 10 N растворе H2S04. В катодный полупериод на поверхности электрода могут протекать, по крайней мере, три реакции.

1. Разряд ионов водорода:

Н+ + е — Надс.

2. Реакция восстановления адсорбированного на анодный полупериод кислорода:

Оадс + 2Н+ + 2е - Н20.

3. Реакция, связанная с восстановлением окислов титана, образовавшихся в анодный полупериод тока:

TinOm + 2р Н+ + 2ре -TinOm_p + р Н20.

Следует отметить, что вследствие весьма отрицательного значения обратимого потенциала титана полное восстановление окислов титана и разряд собственных ионов металла в катодный полупериод маловероятны, однако частичное восстановление высоковалентных окислов титана до более низких степеней окисления вполне возможно.

В анодный полупериод тока можно предполагать следующие реакции.

1. Реакция ионизации адсорбированного за катодный полупериод атомарного водорода:

Надс —Н+ +е.

2. Реакция ионизации титана:

Ti — Ti3+ + 3e.

3. Образование на поверхности титана адсорбционных или окислых слоев:

Н20 -Оадс + 2Н+ + 2е.

Ti + m Н20 — TinOm + 2mH+ + 2me.

Очевидно, при очень низких плотностях фарадеевского тока основной реакцией в катодный полупернод тока является разряд нонов водорода (1), а в анодный полупериод — ионизация металла (5).

Поэтому при этих условиях величина коррозионного тока, как это следует из рис. 2, соответствует или близка теоретически рассчитанным значениям ее. Анодная реакция ионизации адсорбированного водорода (4) при поляризации титана переменным током в кислых растворах, по-видимому, имеет гораздо меньшее значение, чем при коррозии железа в этих же условиях. Последнее объясняется, очевидно, тем, что более легко образующаяся в анодный полупериод тока на поверхности титана адсорбционная или окисная пленка препятствует адсорбции водорода в катодный полупериод. Это объяснение подтверждается данными работы, в которой непосредственно было установлено, что наличие окислов на поверхности титана сильно затрудняет адсорбцию на нем водорода и последующее наводораживание металла. Аналогичное явление отмечено также, в которой показано, что присутствие на поверхности электрода адсорбированного или прочно связанного кислорода значительно уменьшает адсорбцию водорода при катодной поляризации платины в 1 N растворе H2S04.

Па мере увеличения плотности фарадеевского тока значения коррозионного тока все больше удаляются от теоретической прямой, а потенциал электрода в анодный полупериод, как это видно из рис. 1, смещается в положительную сторону, свидетельствуя о сильном торможении анодного процесса, что особенно характерно для частот 20—200 гц. Это указывает на то, что при более высоких плотностях поляризующего тока в анодный полупериод на поверхности электрода наряду с реакцией ионизации металла начинается реакция образования, согласно уравнениям, сначала адсорбционных, а затем и более прочных окисных слоев. В соответствии с этим в катодный полупериод при увеличении плотности фарадеевского тока начинает возрастать доля обратных им реакций, в результате чего запассивированная в той или иной мере в анодный полупериод поверхность металла подвергается активации в катодный полупериод тока. Периодически повторяющаяся активация поверхности электрода в катодный полупериод тока и является причиной того, что скорость растворения титана под действием переменного тока в серной кислоте гораздо выше, чем при анодной поляризации его постоянным

Оглавление статьи Страницы статьи:  1  2  3  ...  9  10  11  ...  18  19  20 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.10.01   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

16:04 Фрезерные работы на станках с чпу.

16:04 Обработка металла.

16:04 Обработка металла на фрезерных станках с чпу.

16:04 Услуги фрезерной обработки на станках с чпу.

16:04 Фрезеровка нестандартных деталей.

16:04 Фрезеровка деталей из нержавейки.

15:05 Неликвиды осей в наличии

14:37 Малогрузовой подъемник от ЭКСПО

14:37 Надежный мачтовый подъемник

14:37 Электротельфер

НОВОСТИ

20 Февраля 2017 17:31
Антигравитация на неодимовых магнитах

14 Февраля 2017 12:10
Самодельные навесные вилы для фронтального погрузчика (16 фото)

21 Февраля 2017 14:30
Японский выпуск стали в январе 2017 года вырос на 288 тыс. тонн

21 Февраля 2017 13:04
Финансовые результаты ПАО ”Полюс” за 2016 год

21 Февраля 2017 12:39
Вьетнамский выпуск стали в 2017 году может вырасти на 12%

21 Февраля 2017 11:33
”ЕВРАЗ НТМК” продолжает участвовать в строительстве комплекса в квартале ”Парк легенд”

21 Февраля 2017 10:54
Компания ”АЭМ-технологии” оптимизирует технологические потоки

НОВЫЕ СТАТЬИ

Как правильно выбрать качественный электродвигатель серии ДАЗО, А4, А4F

Отличные окна из дерева по честной цене

Септики и другие очистные сооружения

Брикетирование и переработка лома черных металлов

Мягкая черепица – современный кровельный материал

Легкоплавкие сплавы для пайки

Сетчатые трубопроводные фильтры для промышленности

Вакуумные установки и станции

Указатели уровня масла для электрооборудования

Современные кровельные элементы для крыши

Мебель под старину: придаём интерьеру солидность

Важные особенности покупки леса и пиломатериалов

Применение технологии промокодов для PR и рекламы товаров

Купон столплит для скидки на мебель

Выбор шкафа-купе для своего дома

Виды оборудования резервуаров для нефтепродуктов

Особенности выбора дизельных генераторов

Доборные элементы для кровель из металлочерепицы

Сварка в углекислом газе

Использование экскаваторов для земельных работ

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.