Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Защита от коррозии металла, гальваника, ЭХО -> Коррозия и защита алюминия -> Коррозия в различных средах -> Часть 6

Коррозия в различных средах (Часть 6)

только в текущем разделе

Оглавление статьи   Страницы:    1  2  3  4  5  6  7  8  9   

3. КОРРОЗИЯ в ВОДНЫХ СРЕДАХ

Пресная вода

Коррозия большинства стойких алюминиевых сплавов в воде, так же как и в атмосфере, носит преимущественно питтинговый характер, но протекает заметно неравномернее в виде редких и довольно крупных поражений.

Такое различие связано с электропроводностью воды, практически всегда более высокой, чем электропроводность тонких пленок влаги, в которой обычно развивается коррозия в атмосферных условиях. Неравномерность распределения очагов коррозии часто затрудняет точную их оценку и поэтому результаты замеров питтинговой коррозии часто носят случайный характер, при котором надежное определение основных закономерностей коррозионного поведения алюминия и его сплавов в воде не всегда возможно. Тем не менее анализ результатов, накопленных к настоящему времени в мировой практике, показывает, что глубина питтинга в воде, так же как и в атмосферных условиях, растет в соответствии с формулой h=Rτ1/3. Коэффициент R в большинстве случаев при испытаниях в воде существенно выше, чем в атмосферных условиях.

Количество питтингов, их характер и глубина проникновения в значительной мере зависят от состава воды и условий эксплуатации сплавов. Наибольшее влияние на коррозию оказывают такие факторы, как жесткость воды (присутствие в воде комплексов солей карбонатов, сульфатов и хлоридов), рН, содержание примесей тяжелых металлов (особенно меди и ртути), насыщение кислородом и др. В этой связи важное значение в определении скорости коррозионного процесса имеют такие условия, как скорость движения воды и температура.

Кроме влияния на электропроводность, перечисленные факторы могут в значительной мере изменять защитные свойства естественной оксидной пленки алюминия и его сплавов, ускорять или замедлять катодные и анодные реакции и т.д. На практике многие перечисленные факторы могут действовать одновременно и значительно ускорять процесс коррозии на алюминиевых сплавах.

Небольшое отклонение значения рН от нейтральной среды в кислотную (рН до 4,0) или слабо щелочную увеличивает скорость питтинга в естественной свежей воде. Минимальная скорость развития питтинга наблюдается при рН от 6 до 7. Бикарбонат незначительно влияет на коррозию алюминия. Его роль может быть заметной в присутствии таких примесей, как медь и хлориды. Максимальные потери наблюдались при содержании карбонатов 90 мг/л. Присутствие в воде сульфатов может повышать сопротивление питтинговой коррозии.

Наиболее заметный эффект вызывает наличие в воде солей тяжелых металлов и особенно меди и ртути. Содержание в 1 л дистиллированной воды только 0,10 мг меди вполне достаточно, чтобы вызвать появление питтинга на алюминии. Однако влияние меди в значительной степени определяется наличием в среде других веществ, например хлоридов, карбонатов, при совместном присутствии которых увеличиваются коррозионные потери уже при содержании ионов меди 0,06 мг/л. В свою очередь отрицательное влияние меди связано с рН среды и проявляется в основном при значении рН ниже 8.

Железо обладает меньшей коррозионной активностью. Тем не менее присутствие в воде ржавчины усиливает коррозию алюминия и его сплавов, особенно при повышении температуры и изменении скорости потока. В этом случае прямые участки трубопроводов покрываются плотным защитным слоем ржавчины, а в местах турбулентного потока или изменения скорости ржавчина не удерживается, и они служат эффективными анодами.

Значительно более агрессивное действие на алюминий и его сплавы в воде может оказывать ртуть. Резкое снижение коррозионной стойкости наблюдается даже в присутствии следов металлической ртути.

Большое влияние на коррозионную активность воды оказывают хлориды. Некоторое заметное увеличение скорости коррозии наблюдается при увеличении их концентрации от 50 до 300 мг/л. Как уже отмечалось, влияние хлоридов резко возрастает в присутствии ионов меди и заметно в присутствии карбонатов.

Хлорированная вода при концентрации свободного хлора до 0,5 мг/л не оказывает заметного влияния на коррозию алюминия и его сплавов. В то же время содержание хлора в пределах от 10 до 50 мг/л приводит к значительному увеличению коррозии трубопроводов из алюминиевых сплавов. Кроме перечисленных факторов, на скорость питтинговой коррозии сложное влияние оказывают скорость движения потока воды и ее температура. При повышении температуры до 50 °С скорость коррозии алюминия и его сплавов в воде увеличивается, затем при более высоких температурах резко уменьшается, что, по-видимому, связано с уменьшением растворимости в воде кислорода и формированием при 70- 80 °С бемита. Как правило, при повышении скорости потока до 2-4 м/с коррозия алюминиевых сплавов уменьшается вследствие усиления пассивации. Дальнейшее повышение скорости может снижать сопротивление коррозии из-за абразивного воздействия и кавитации.

Таким образом, в зависимости от условий коррозионная стойкость алюминиевых сплавов в пресной воде изменяется в очень широких пределах: от стойкого состояния до состояния пониженной стойкости. Например, в дистиллированной или чистой конденсированной воде возможно применение алюминиевых сплавов в виде труб и других изделий в течение длительного времени без замены, что определяет их широкое использование для контейнеров дистиллированной и деионизированной воды, а также в системах парового обогрева. В жесткой воде (общая жесткость 300-500 мг/л) при содержании меди 0,08 мг/л алюминиевые трубы выходят из строя через 4-6 лет, а при увеличении температуры до 70- 90 °С - через 0,5-1,5 года.

На основе результатов, полученных с учетом развития питтинга в отсутствии защиты, толщину стенки больших резервуаров для хранения воды выбирают не менее 6 мм, что позволяет эксплуатировать их длительное время. Толщина стенок труб, по которым течет жесткая агрессивная вода должна быть не менее 4,5 мм, а неагрессивная мягкая вода - не менее 1,5 мм.

Для применения в пресной воде с температурой до 100 °С обычно используют различные марки алюминия, низколегированные сплавы различных систем - АМц, Д12, АД31, АДЗЗ, АМг2. В слабоагресснвной движущейся воде можно использовать сплавы 1935 и 1915. При высоких температурах (от 100 до 250 °С) в чистой воде находят применение алюминий и его сплавы, легированные катодными добавками (хром, железо, медь), которые в данных условиях тормозят развитие коррозии.

Для того, чтобы удлинить срок службы и уменьшить толщину стенки изделий, применяющихся в пресной воде, их защищают плакированием или напылением алюминиевыми сплавами, анодными по отношению к основе. Такой подход значительно расширяет выбор сплавов, предназначенных для эксплуатации в воде и делает возможным применение даже вторичных сплавов типа ВД1, защищаемых плакировкой из АД1 или АЦ2.

В замкнутых системах целесообразно применять подходящие ингибиторы в концентрациях, предотвращающих образование питтингов.

 

Морская вода

Главным компонентом, определяющим коррозионную агрессивность морской воды, являются галоидные ионы, концентрация которых достигает 30 г/л. Поэтому на практике для имитации действия морской воды применяют ускоренные испытания в хлоридных растворах.

Испытания в морской воде отличаются от испытаний в таких растворах более локальным развитием коррозии и приводят к большей глубине поражений при меньших общих потерях (например, массы). В морской воде более четко и ярко по сравнению с 3%-ным раствором NaCl проявляются структурные виды коррозии РСК, МКК и КР, характерные для ряда алюминиевых сплавов.

Агрессивность морской воды в отличие от пресной может в значительной мере определяться содержанием кислорода, концентрация которого в зависимости от солености воды, скорости движения потока и глубины погружения может меняться в широких пределах.

Важным фактором, влияющим на коррозионное воздействие морской воды в естественных условиях, является биологическое обрастание, которое, как правило, более интенсивно идет в поверхностных слоях и может приводить как к уменьшению, так и к увеличению стойкости алюминиевых сплавов.

Данные, представленные в табл. 70, 71, показывают,  что коррозионная стойкость алюминия и его сплавов в морской воде значительно ниже чем в атмосферных условиях и существенно понижается по мере увеличения глубины погружения в морскую воду. Это прежде всего связано с понижением концентрации кислорода в воде. Такая зависимость коррозии от содержания кислорода характерна практически для всех металлов, находящихся в пассивном состоянии. Некоторое положительное влияние в поверхностных слоях моря может оказывать биологическое обрастание, при котором на поверхности образца образуется тонкая, почти сплошная карбонатная пленка, легко растворимая при обработке образцов в кислотах (в частности, в HN03). Одновременно наличие такой пленки может приводить к еще более неравномерному распределению очагов коррозии.

Основные закономерности коррозионного поведения алюминия и его сплавов в зависимости от природы сплава во многом совпадали с закономерностями, отмеченными для этих сплавов в морской атмосфере.

Глубина питтинговой коррозии на алюминии различных марок в ряде случаев может быть заметно больше, чем некоторых низколегированных сплавов типа АМг2, АМц и др. Чем чище по примесям алюминий, тем больше может быть максимальная глубина поражений. Относительно высокой коррозионной стойкостью характеризуются низко- и среднелегированные сплавы системы А1-Mg, что и определяет их широкое применение в качестве важных конструкционных материалов в морских строительных конструкциях. Неправильная термообработка полуфабрикатов из сплава, содержащего выше 3,5 и особенно выше 5 % Mg, приводит в ряде случаев к резкому снижению коррозионной стойкости из-за появления чувствительности к МКК и РСК.

Искусственное старение сплава типа АДЗЗ приводит к заметному уменьшению коррозионной стойкости из-за появления чувствительности к МКК. По этой же причине сварные соединения сплавов системы А1-Mg- Si являются нестойкими в морской воде. Значительно понижается коррозионная стойкость сварных соединений сплавов системы А1-Mg.

Сплавы системы AI-Zn-Mg (1915Т, 1935Т и др.) в большинстве случаев бывают нестойкими в морской воде из-за чувствительности к РСК, которая особенно сильно развивается вблизи сварных швов.

Высоколегированные сплавы Д16Т и В95Т1 в морской воде также подвержены интенсивной РСК, скорость которой значительно выше, чем в атмосферных условиях На сплаве В95 в состоянии Т2 и ТЗ развивается только язвенная коррозия с глубиной, приблизительно соответствующей глубине коррозии на низко- и среднелегированных алюминиевых сплавах. Биологическое обрастание значительно тормозит развитие РСК на высокопрочных алюминиевых сплавах, и глубина от этого вида коррозии при испытании в поверхностном слое морской воды может быть меньше, чем в атмосферных условиях.

Данные за 10 и 16 лет выдержки в морской воде стойких алюминиевых сплавов подтверждают вывод о том, что коррозия в этой агрессивной среде, так же, как и в обычной воде и в атмосфере, идет с торможением скорости роста питтинга во времени, но при этом k в формуле (22) значительно выше, чем при росте питтинга в атмосферных условиях. Повышение k происходит не только в результате увеличения эффективности действия «катодных элементов», но и вследствие возрастания общей суммы легирующих элементов в сплаве.

В морской воде контактная коррозия значительно более опасна, чем в атмосферных условиях. Степень-опасности контактной коррозии алюминиевых сплавов в 3,5 %-ном растворе NaCl уменьшается в ряду медь> >сталь 3>нержавеющая сталь>титановый сплав. Относительно высокая электропроводность морской воды в значительной мере облегчает защиту алюминиевых сплавов электрохимическим способом. Очень эффективно в данном случае применение анодных плакировок, поэтому такой сплав, как АМц, часто применяется в плакированном виде. Результаты испытаний показывают высокую надежность плакировок, содержащих цинк. Коррозионная стойкость после одного года испытаний на таком металле (0,4 мм) заметно выше, чем на металле без плакировки (3,2 мм).

Сплавы системы А1 - Mg и другие алюминиевые сплавы могут быть достаточно легко защищены при использовании расходуемых анодов. Наиболее эффективными считаются аноды из сплавов на основе системы А1 - Zn - Hg. Наряду с этими можно применять аноды на основе цинка и алюминиевого сплава системы А1 - Zn - Mg. Применять аноды из магния нельзя, так как это приводит к перезащите в результате повышения рН около катода.

Применение алюминиевых сплавов в морских средах постоянно расширяется. Построены суда с алюминиевыми корпусами, в том числе суда на подводных крыльях. Алюминиевые корпуса небольших судов не окрашиваются. Окрашивание обычно проводят для предотвращения и очистки корпусов от биологического обрастания. При этом применяются составы на основе оловянно-органических соединений.

Для крепежа можно применять детали, выполненные из стали, но обязательно с покрытием, лучшими из которых являются цинк (горячее цинкование), а также алюминивые сплавы (горячее алюминирование). Перспективно применение алюминиевых сплавов в опреснительных установках.

Оглавление статьи   Страницы:    1  2  3  4  5  6  7  8  9   

Последние обсуждаемые темы

Самые обсуждаемые темы за все время

 Тема

Выставка ExpoCoating

Влияние агрессивных сред на цинковое покрытие

Защита чугунных труб

Хромирование стали

Технология серебрения металлов

Хромирование корпусов часов

Аффинаж в кустарных условиях

Удаление ржавчины со стали химическим методом

Серебрение латуни

Частые вопросы и ответы по разделу

 Тема

Сообщений 

Частые вопросы и ответы по разделу

11

Хромирование стали

5

Просто вопрос почему не лудят современные машины

3

Воронение стали

2

Удаление ржавчины со стали химическим методом

1

Серебрение латуни

1

Виды травления стали

1

Металлизация отверстий

1

Декоративное лужение

1

Гальваническое покрытие алюминия

1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Основные закономерности коррозии алюминия
Методы исследования коррозионных свойств алюминия
Анизотропия коррозионных свойств
Коррозия в различных средах
Защита алюминия покрытиями
Коррозионная стойкость теплопрочных сплавов
• Влияние закалки на коррозионные свойства алюминия
Повышение антикоррозионных свойств термомеханической обработкой
Коррозионные свойства низколегированного алюминия
Коррозионные свойства сплавов Al-Zn-Mg-Cu

НОВЫЕ ОБЪЯВЛЕНИЯ

Ч 08:33 Труба электросварная 57х3 мм

Ч 08:33 Лист ПВЛ 506

Ч 08:33 Труба профильная 60х40х2

Ц 08:32 Лист алюминиевый АМцМ 2х1200х3000

Ч 08:32 Труба профильная 80х80х5

Ч 08:32 Труба профильная 60х60х3

Ч 08:32 Труба нержавеющая 12х18н10т

Ц 08:32 Шина алюминиевая АД31Т 10х60х4000

Ч 08:32 Профнастил окрашенный

Ч 08:32 Швеллер стальной 14

Ч 08:32 Профнастил С8, С10, С21, нс21, K25, HC35, HC57

Ч 08:32 Труба профильная 150х150х4

НОВОСТИ

16 Января 2017 17:17
Мойка подвижного состава

13 Января 2017 08:10
Частные дома из металлоконструкций (23 фото)

17 Января 2017 13:03
Саратовский филиал ”ПГК” увеличил объем погрузки

17 Января 2017 12:51
Первый электровоз переменного тока 2ЭС7 ”Уральских локомотивов” начал работу на БАМе

17 Января 2017 11:39
Корпорация ”ВСМПО-АВИСМА” утвердила инвестплан на 2017 год

17 Января 2017 10:12
Компании ”Беринг Золото” и ”Рудник Валунистый” стали резидентами ТОРа ”Беринговский”

17 Января 2017 09:23
АО ”ФГК” в 2016 году увеличило объем перевозок экспортных грузов на 23%

НОВЫЕ СТАТЬИ

Стабилизаторы напряжения и их особенности

Промышленное холодильное оборудование

Вентиляторные градирни и комплектующие для них

Электрические шкафы и комплектующие для них

Никелевая лента 79НМ

Разработка плана ликвидации аварий

Легкие каркасные металлоконструкции

Современные системы кондиционирования

Комплектующие и фурнитура для мебели

Обои для жилых и общественных помещений

Завод по производству металлоконструкций

Особенности и выбор рольставен

Охрана промышленных объектов и грузов

Мобильные лаборатории в промышленности

Металл для металлоконструкций

Деколирование подарочной посуды

Некоторые маркетинговые проблемы продаж промышленных товаров

Особенности получения займов в кредитных организациях

Двери из металлопластика - общие особенности и виды

Наплавляемая гидроизоляция и современые промышленные кровли

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.