Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!
Полезные статьи -> Сварка, резка и пайка металлов -> Пайка -> Пайка с флюсом -> Часть 6

Пайка с флюсом (Часть 6)

только в текущем разделе

Оглавление статьи   Страницы:    1  2  3  4  5  6  7  8   

Фторид калия образует с 33 % NaF простую эвтектику с температурой плавления 700 °С. Флюс из смеси таких компонентов может быть изготовлен в виде пасты, замешанной на воде, спирте и четыреххлористом углероде.

Хлориды действуют аналогично фторидам, но имеют более узкий интервал действия и при более низких температурах, чем фториды.

Введение хлоридов во флюсы на фторидной основе понижает их температуру плавления. Хлориды имеют тенденцию окислять паяемый металл.

Щелочи — поташ и гидроокись натрия — используют для повышения температурного интервала активности флюсов; при этом даже следы влаги могут существенно уменьшать продолжительность действия флюса (его «живучесть»).

Среди высокотемпературных различают флюсы:

1) галогенидные (хлоридно-фторидные с температурными интервалами активности 400—625 °С и 600—1000°С);

2) с простыми и комплексными фторидами (с температурными интервалами активности 550—860 °С и 750—11 000 °С);

3) из фосфатов и силикатов с соединениями бора (с температурным интервалом активности выше 1000°С);

4) без соединений бора с фторидами и хлоридами; время действия флюсов обычно менее или равно 5 мин.

Составы важнейших флюсов и их ориентировочные температуры активности приведены в табл. 43, 44.

Флюсы ПВ209 и ПВ284 (ГОСТ 23178—78) первоначально были разработаны для пайки коррозионно-стойких сталей серебряными припоями, содержащими 40—45 %Ag при температуре 620—750 °С. Обнаружено, что при газопламенной пайке крупногабаритных изделий из латуней серебряными припоями с этими флюсами в паяных швах возникает значительное число пор и непропаев, снижающих герметичность соединений, а после удаления галтельных участков — ухудшающих микрогеометрию их поверхности. Подпайка дефектных мест увеличивает трудоемкость изготовления и снижает эксплуатационные характеристики изделий. В связи с этим разработан флюс «Салют 1» для газопламенной пайки латунных, в том числе крупногабаритных изделий.

Термографические, рентгеноструктурные и химические исследования флюсов ПВ209, «Салют 1» и их шлаков после переплава, после растекания их по латуни и меди, а также после пайки серебряными припоями показали, что в процессе нагрева флюса ПВ209 происходят реакции между его компонентами с расплавлением образующихся продуктов:

При температуре 400—445 °С плавятся KF и KBF4. При температуре 500 °С во флюсе образуются простые и комплексные соединения фторидов, которые при дальнейшем повышении температуры растворяются в жидком флюсе. При нагревании до 750 °С и выше образуются комплексные соединения боратов.

Растекание жидкого флюса по поверхности латуни происходит с образованием четырех зон, различающихся по фазовому составу. Во второй зоне содержится больше соединений бора, чем в первой, центральной зоне. В результате окислительно-восстановительных реакций и обесцинкования поверхностных слоев латуни на них появляется слой чистой меди.

Как показали рентгенограммы шлаков, образовавшихся на поверхности латуни, подвергнутой предварительно флюсованию, и оксидов, образовавшихся на неофлюсованной поверхности, окисление металла под слоем флюса происходит более интенсивно, чем без него. Медь в контакте с флюсом окисляется в 2 раза быстрее, чем латунь.

Взаимодействие жидкого припоя с паяемым металлом, флюсом и компонентов флюса между собой способствует увеличению продуктов реакции. Изменение состава флюса в процессе его растекания и затекания в зазор между деталями ухудшает условия смачивания паяемого металла жидким припоем, а выделение газообразных составляющих BF3, Н2 и других в зазоре при недостаточно быстром их дрейфе в галтельные участки паяных швов способствует образованию газовых пор в шве.

Процесс флюсования при газопламенной пайке, таким образом, является сложным: при повышении температуры происходят различные электрохимические и химические процессы взаимодействия компонентов флюсов между собой и с парами воды, с оксидами и паяемым металлом, продуктов реакции между собой.

В начале нагрева на поверхности паяемого металла оксиды, образовавшиеся под действием паров воды из пасты флюса и газового пламени, переходят в гидрооксиды меди и цинка: Zn(OH)2 и Сu(ОН)2. При нагреве выше 80°С гидрооксиды разлагаются, что приводит к нарушению сплошности оксидной пленки на металле:

Ме0 + Н20(г) =Ме(ОН)2.

Расплав флюса через несплошности в оксидной пленке растворяет под ней паяемый металл вследствие преимущественного протекания процесса по термодинамически менее равновесным местам. В результате этого, как и при растворении паяемого металла в жидком припое, оксидная пленка диспергирует и переходит в расплав флюса с образованием комплексных соединений фторидов цинка в результате обмена катионами между фторидами щелочных металлов и диссоциированными оксидами цинка. Дальнейшее повышение температуры ускоряет этот процесс; медь и цинк восстанавливаются, взаимодействуют с компонентами флюса и при температуре 600 °С образуют соединения, растворимые во флюсе.

При дальнейшем повышении температуры до 700 °С из расплава флюса испаряются борный ангидрид и соединения BF3(BOF2), что приводит к выпадению избыточных комплексных соединений меди и цинка, диссоциирующих вслед за этим с образованием простых фторидов. Эти фториды взаимодействуют с парами воды, гидролизуются с образованием оксидов и фтористого водорода. При 700—800 °С появляются комплексные соединения боратов типа К2В8О13, а ионы О2- и катионы К+ образуют высокоактивный оксид, который далее соединяется с борным ангидридом, а последний взаимодействует с оксидами меди и цинка, образуя с ними комплексные соединения. Все эти процессы активизируются в присутствии жидкого припоя. В результате этих процессов активность флюса понижается.

Состав шлаков после газопламенной пайки латуни с флюсом ПВ209 зависит от массы паяемых узлов вследствие ее влияния на продолжительность нагрева, степень завершенности процесса флюсования и снижения активности флюса. В шлаках этого флюса при пайке мелких деталей содержатся соединения KZn4F7 и K3Zn2F7, которые отсутствуют в шлаках, образующихся при пайке более крупных и массивных изделий. Вместе с тем в шлаках появляются новые фториды K3CUF4, ZnF2, что характерно для более длительного процесса флюсования. Независимо от массы деталей в шлаках флюса ПВ209 после пайки латуни Л63 присутствуют оксиды ZnO и следы Cu20.

Различие процессов флюсования меди и латуни состоит в том, что в последнем случае комплексные соединения фторидов не образуются: при более высоких температурах получаются простые бораты цинка и меди, которые гидролизуются парами воды.

Таким образом, непропаи при газопламенной пайке массивных изделий из латуни обусловлены большей продолжительностью процесса их нагрева и окисления, после чего активность флюса оказывается недостаточной и окисленные участки препятствуют равномерному смачиванию паяемого материала жидким припоем.

При газопламенном нагреве газовая пористость в шве возникает главным образом вследствие воздействия BF3, а также водорода и частично азота, попадающих в зону пайки из газового пламени. При этом применение слабовосстановительного пламени способствует некоторому снижению пористости в швах.

Флюс «Салют 1», основу которого составляют соединения Н3ВО3—KF-2H20 с отношением 0,9, содержит также компоненты, препятствующие скоплению газов в зазоре, более эффективно защищающие паяемый металл от окисления и способствующие растворению оксидной пленки. Введение KNO3 во флюс «Салют 1» защищает металл от окисления и понижает число непропаев в шве. Установлено, что KNO3 защищает латунь в интервале температур 400—700 °С, но окисляет медь, начиная от 500 °С, и поэтому для высокотемпературной пайки меди флюс «Салют 1» не рекомендуется.

В процессе растекания состав флюса «Салют 1» не изменяется, газовые включения не образуются, что способствует затеканию припоя в зазор ровным фронтом; флюс имеет больший интервал температурно-временной активности, чем флюс ВП209.

При пайке с флюсом «Салют 1» величины зазора (0,01—0,5 мм) и нахлестки (2—5 мм) существенно не влияют на качество паяного соединения. Это обусловлено отсутствием в шлаках оксидов металлов. Температурный интервал активности флюса «Салют 1» при пайке с серебряными припоями составляет 650— 750 °С.

Остатки и шлаки коррозионно-активных флюсов-электролитов, имеющих рН<7, удаляют с поверхности паяного изделия путем тщательного промывания его в растворителях, например воде.

Введение во флюсы для пайки серебряных припоев 5 % Si02 в виде очень мелких частиц избавляет от необходимости просушки флюса перед пайкой.

  

Флюсы для высокотемпературной пайки алюминия

При высокотемпературной пайке алюминия используют флюсы следующих систем: 1) КС1—LiCl—NaCl—ZnCL2 (с добавкой фторидов); 2) КС1—LiCl—NaCl—ZnCl2 (CdCl2); 3) KC1—LiCl—NaCl (c криолитом или KF и AIF3); 4) KC1—NaCl—BaCl2.

Флюсы систем 1 и 2 относятся к реактивным; они нашли применение при пайке в печах (система 2), газопламенным нагревом и погружением (система 1). Флюсы систем 3 и 4—нереактивные — применяют в основном для пайки во флюсовых ваннах.

В процессе флюсования алюминия и его сплавов в расплавах систем 3 и 4 имеет место механизм электрохимического разрушения оксидной пленки на паяемом металле и твердом припое. Поверхность окисленного алюминия в расплавах хлоридных и хлоридно-фтористых солей заряжена положительно. Поэтому на первой стадии флюсования на межфазной границе оксид — расплав флюса адсорбируются поверхностно-активные ионы — преимущественно анионы. Ионы А13+ из металла мигрируют через несплошности в слое оксида, обусловленные нестехиометричностью его состава, к границе раздела его с флюсом под действием поля напряжением ~ 100 В при толщине пленки 100 нм. Оксидная пленка разрушается, когда стационарный потенциал алюминия ЕС1 в расплаве флюса становится более положительным, чем потенциал активации Еа. При потенциале Еа галогениды вытесняют ионы гидрооксида с поверхности алюминия, препятствуя его электрохимическому окислению. При этом химическое сродство алюминия к кислороду уменьшается и становится меньше, чем сродство алюминия к иону С1-.

Оглавление статьи   Страницы:    1  2  3  4  5  6  7  8   

Последние обсуждаемые темы

Самые обсуждаемые темы за все время

 Тема

Частые вопросы и ответы по пайке

пайка стали 20Х13 с твердыми сплавами типа Т5К10, ВК*

Пайка золота

Виды паяльников

Пайка цинка

Пайка самоваров

Напайка твердосплавных пластинок

Паяние с травленой соляной кислотой

Пайка меди с алюминием

Лазерная пайка

 Тема

Сообщений 

Частые вопросы и ответы по пайке

15

Физико-химические процессы при пайке

14

Паяние с травленой соляной кислотой

4

пайка стали 20Х13 с твердыми сплавами типа Т5К10, ВК*

3

Виды паяльников

3

Пайка цинка

3

Пайка меди с алюминием

2

Пайка золота

2

Пайка самоваров

2

Напайка твердосплавных пластинок

2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Основные понятия пайки
Классификация способов пайки по формированию паяного шва
Легкоплавкие припои для пайки
Средне и высокотемпературные припои
Пайка с флюсом
Бесфлюсовая пайка
Классификация видов пайки по способу нагрева
Совместимость металла и припоя
Пайка алюминия и его сплавов
• Пайка магния и его сплавов
Пайка меди и ее сплавов
Пайка сталей и чугуна
Пайка никеля и его сплавов
• Газовая пайка и наплавка - основы
Пайка титана и его сплавов
Основы проектирования пайки металлических изделий

НОВЫЕ ОБЪЯВЛЕНИЯ

Т 08:59 Запчасти для станочного и кранового оборудования.

Т 08:59 Колеса крановые, крюки.

Т 08:59 Запчасти для станочного и кранового оборудования.

Т 08:59 Колеса крановые,крюки.

Т 08:59 Колеса крановые, крюки

Ц 07:58 Лист медный 0,5х600х1500 М1т

Ч 07:56 Труба профильная 50х50х3

Ч 07:56 Профнастил для забора и кровли

Ч 07:56 Круг нержавеющий 08Х18Н10Т 40 мм

Ч 07:56 Круг стальной 10 мм

Ч 07:56 Труба стальная ВГП 32x3.2

Ч 07:56 Сетка оцинкованная 50х50х4 мм в картах 1000х2000

НОВОСТИ

27 Сентября 2016 14:19
115-летний вуппертальский монорельс (20 фото, 1 видео)

26 Сентября 2016 17:48
Змееподобный робот для подводного контроля

27 Сентября 2016 17:16
Артель ”Прибрежная” добыла 55 кг золота

27 Сентября 2016 16:25
Азиатский выпуск чугуна в августе вырос на 3,8%

27 Сентября 2016 15:36
На ”Производстве полиметаллов” АО ”Уралэлектромедь” монтируют трубу, которая не ржавеет

27 Сентября 2016 14:04
Китайский экспорт толстолистовой стали за 8 месяцев вырос на 2,4%

27 Сентября 2016 13:35
АО ”ФГК” нарастило перевозки черных металлов на Московской железной дороге

НОВЫЕ СТАТЬИ

Общие основы использования горячекатанного нержавеющего квадрата в производстве

Квадратный прокат из нержавеющий стали - виды и применение

Круг горячекатаный в разных отраслях промышленности

Классификация кругов и прутков нержавеющих

Нержавеющая стальная проволока - общие сведения

Основные виды сварочной проволоки из нержавейки

Обзор автокранов и их назначение

Строительство и борьба с грунтом

Международное право в области иммиграции

Как применяются резервуары в различных отраслях промышленности

Проволока сварочная Св-06Х19Н9Т для сварки легированных сталей

Сетка нержавеющая сварная - виды и особенности

Проволока нержавеющая сварочная и её применение в промышленности

Прием металлолома в Москве

Болты - технология, свойства, применение

Разновидности систем кондиционирования, технические и эксплуатационные характеристики

Какая бывает керамическая плитка для полов

Как изготавливают трубопроводные отводы

Преобразователи напряжения от производителя

Лом меди: особенности оценки

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.