Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Пайка -> Классификация способов пайки по формированию паяного шва -> Часть 2

Классификация способов пайки по формированию паяного шва (Часть 2)

только в текущем разделе

Оглавление статьи   Страницы:    1  2  3  4  5  6  7  8   

поверхности; 3) перенос масс; 4) образование поля напряжений. Детальная структура, состав и толщина поверхностных слоев вещества пока мало изучены, и о его свойствах судят по результатам взаимодействия с контактирующими веществами.

Могут иметь место следующие варианты смачивания твердого тела жидкой фазой:

1) межфазная энергия изменяется во времени с достаточно малой скоростью, так что капля жидкой фазы успевает принять равновесную форму для установившегося к данному моменту времени значению отж. Тогда изменение краевых углов описывается уравнением для мгновенных значений (квазиравновесное смачивание) (по Д. Н. Холомону и Д. Тарнбалу) и характеризуется медленным изменением и в течение минут или часов. Для этого случая действительна зависимость величины угла v от значений о;

2) если временная зависимость контактного угла смачивания определяется также инерцией массы жидкой фазы и ее вязкостью, то значение угла и в течение всего периода распространения капли по поверхности паяемого материала является неравновесным и для ц,его уравнение cos v = отг — oтжжг неприменимо. Для больших скоростей изменения угла смачивания v, при которых весь период его изменения чрезвычайно мал (0,1—0,01 с) при условии 180°>v>90°— несмачивание, при 90°> v> 0 наступает ограниченное смачивание и при v=0° полное смачивание.

В случае ограниченного смачивания твердого тела жидким растекание последнего сопровождается изменением краевого угла от начального значения до равновесного v0. Движущая сила такого растекания Ao = ожг(cos v0 — cos д), где д—динамический угол смачивания. При полном смачивании после превращения капли в плоский слой жидкости Ао = отг —отж —ожг. Дополнительные факторы, влияющие на растекание,— масса капли или слоя, а также изменение отж вследствие физико-химического взаимодействия контактирующих веществ.

Сопротивление жидкой фазы процессу растекания подразделяют на две составляющие: кинетическое сопротивление, действующее по периметру растекания, и сопротивление вязких сил в объеме растекающейся жидкости. Если растекание контролируется первой составляющей, то соответствующий режим называется кинетическим. Его анализ с позиций теории абсолютных скоростей реакций приводит к экспоненциальной зависимости перемещения линии смачивания (периметра) от движущей силы растекания P = eKP/RT при (U = const, где К — константа; R — постоянная Больцмана; Т — температура растекания. Изменение сопротивления вязких сил происходит в гидродинамическом режиме. При этом различают стадию инерционного растекания, когда сопротивление обусловлено силами инерции, действующими в объеме жидкости. Кинетика растекания в этом случае хорошо описывается параболической зависимостью, предложенной В. П. Демянцевичем и др., смоченной площади от времени тг2 = A1, где A1 — коэффициент, зависящий от свойств контактирующих веществ и температуры. При растекании в инерционном режиме вязкость жидкости не влияет на скорость растекания.

Анализ кинетики вязкого растекания основан на решении систем уравнений Навье — Стокса и непрерывности для вязкой несжимаемой жидкости с учетом особенностей движения жидкости. Для случая толстых слоев, когда преобладающей является сила, связанная с уменьшением потенциальной энергии при понижении центра тяжести слоя жидкости, получено уравнение для радиуса г смачивающей жидкости в зависимости от времени т.

Смачиваемость паяемого материала жидким припоем, находящимся в динамическом состоянии (пайка погружением, волной припоя), более правильно оценивать не по углу смачивания или площади растекания, а по силе, действующей на образец при его погружении и смачивании припоем. В условиях пайки погружением в ванну, особенно при использовании автоматических линий, важнейшей характеристикой является скорость смачивания. Испытания на смачиваемость при этом проводят по методике ISO: на менискографе (метод силового баланса) квадратные образцы со стороной 25 мм погружают в ванну вдоль направления проката с заданной скоростью.

Одним из путей улучшения смачиваемости Мк припоем является активирование жидкой фазы. Известно, что вещества в момент их образования (контактного плавления или химической реакции) обладают более высокой химической активностью, чем после завершения этого процесса. Авторами показано, что при использовании смеси компонентов, образующих эвтектику Sn—Pb, AI—Си, заметно улучшается их растекаемость по сравнению с растекаемостью готовых эвтектик (по меди и по алюминию соответственно).

Поэтому применение смесей из порошков компонентов, взаимодействующих между собой и (или) с паяемым металлом, технологически более эффективно, чем применение готовых припоев результирующего состава.

Затекание припоя в зазор. При движении жидкого припоя в капиллярном зазоре, в отличие от растекания по открытой поверхности, не происходит увеличения поверхности раздела припой — окружающая среда (флюс). При отсутствии смачивания припой, даже если он каким-то образом первоначально введен в зазор, например, уложен в виде фольги, под действием отрицательного капиллярного давления будет вытесняться из зазора.

В предположении ламинарного течения припоя в зазоре имеет место параболическое распределение скорости потока жидкости по толщине; у стенок капилляра жидкость покоится и имеет место зависимость для средней скорости потока

Cледует, что скорость течения в зазоре растет пропорционально квадрату ширины зазора и обратно пропорционально длине заполнения участка зазора.

Вывод о ламинарном характере движения жидкости в капиллярном зазоре следует из подсчета числа Рейнольдса для типовых значений, применяемых при пайке капиллярных зазоров и свойств жидких припоев. Однако часто ламинарность потока не наступает, так как невозможно заполнить зазор жидкостью, которая имеет нулевую скорость движения на периферии. По фронту жидкости должны существовать нормально к стенке зазора потоки. Однако такая турбулентность может существовать лишь при входе в зазор. Остальная часть потока должна быть однонаправленной.

Экспериментальное исследование процесса смачивания, растекания и затекания в зазор подтверждает теоретический анализ.

На рис. 14 приведена схема изменения v, I, t в процессе затекания припоя в зазор для случая, когда припой одновременно смачивает обе пластинки под углом V2 и входит в зазор (этап Ti). При этом образуется симметричный мениск припоя, который движется по зазору с постоянным углом смачивания, одинаковым как для нижней, так и для верхней пластины (этап T2) Вблизи выхода из зазора обнаруживается эффект увеличения контактного угла смачивания до значения и3 с одновременным уменьшением скорости заполнения зазора, что, по-видимому, обусловлено достижением припоем конца зазора и снижением вследствие этого капиллярного давления. Затем при образовании галтельного участка угол смачивания снижается до значения tп.

В реальных условиях в собранных внахлестку пластинах при печном нагреве верхняя пластина некоторое время остается менее нагретой (tв), чем нижняя, лежащая на горячей подставке (tп). Поэтому припой сначала смачивает нижнюю пластину под меньшим контактным углом смачивания, чем верхнюю. При нагреве верхней пластины до температуры нижней образуется симметричный мениск, и кинетика заполнения зазора идет по вышеописанному случаю.

2. КОНТАКТНО-РЕАКТИВНАЯ ПАЙКА

Капиллярная пайка, при которой припой образуется в результате контактно-реактивного плавления соединяемых материалов, промежуточных покрытий или прокладок с образованием эвтектики, называется контактно-реактивной. Сочетания элементов, образующих эвтектику, которые могут быть использованы при контактно-реактивной пайке, представлены. При таком способе пайки нет необходимости в предварительном изготовлении припоя. Количество получаемой жидкой фазы можно регулировать изменением времени контакта, а также толщины покрытия или прокладок, так как процесс контактно-реактивного

ние твердых металлов по месту их контакта при температуре выше температуры плавления эвтектики, но ниже температуры автономного плавления (т. е. солидус-ликвидус) наиболее легкоплавкого из них было названо контактным. Контактное плавление изучалось и в последующие годы. При этом были выявлены многие его особенности, использованные главным образом при пайке.

Эвтектика не является простой механической смесью составляющих фаз, на что указывают более низкие температуры ее плавления и кристаллизации по сравнению с соответствующими температурами сплавов, достаточно близких по составу. Особое состояние фаз в эвтектике по месту их контакта подтверждается также данными о более высокой коррозионной стойкости и твердости эвтектики при быстром затвердевании по сравнению с теми же характеристиками других сплавов той же системы с близким химическим составом. Вследствие особых свойств эвтектического сплава было предложено такой вид плавления, в отличие от автономного и других видов плавления материалов в контакте, например, электроконтактного, назвать контактно-реактивным.

Контактно-реактивному плавлению твердых кристаллических веществ как фазовому переходу первого рода должно предшествовать активизирование атомов контактирующих фаз на их межфазной границе. На начальной стадии процесса энергия активации контактирующих фаз повышается постепенно вследствие накопления потенциальной энергии и достигает максимума на гребне лабильного состояния. Малейшее повышение потенциальной энергии системы по месту контакта двух фаз выше требуемой энергии активации приводит к переходу системы в более стабильное состояние — метастабильное равновесие трех фаз: двух твердых и жидкой, т. е. к плавлению.

Явление контактно-реактивного плавления возможно лишь при нагреве контактирующих веществ несколько выше температуры плавления эвтектики или наиболее легкоплавкого сплава системы с непрерывным рядом твердых растворов с минимальной температурой плавления. Для наступления контактно-реактивного плавления достаточно, чтобы температура элементов в месте их контакта не намного превышала эвтектическую. Так, например, появление эвтектики при контакте легкоплавких металлов — свинца, олова, кадмия, висмута, цинка — наступает при перегреве на 0,9—1,2°С выше эвтектической температуры. Образование жидкой фазы при этом происходит очень быстро: например, при контакте висмута и олова при температуре выше эвтектической на 2—3 °С — в течение 0,5 с.

К настоящему времени явление контактно-реактивного плавления наиболее изучено для элементов, образующих эвтектические системы сплавов. Процесс контактно-реактивного плавления в таких системах при медленном нагреве включает следующие стадии: а) подготовительную, при которой по границе контакта возникает прослойка твердых растворов и (или) химических

Оглавление статьи   Страницы:    1  2  3  4  5  6  7  8   

Последние обсуждаемые темы

Самые обсуждаемые темы за все время

 Тема

Частые вопросы и ответы по пайке

пайка стали 20Х13 с твердыми сплавами типа Т5К10, ВК*

Пайка золота

Виды паяльников

Пайка цинка

Пайка самоваров

Напайка твердосплавных пластинок

Паяние с травленой соляной кислотой

Пайка меди с алюминием

Лазерная пайка

 Тема

Сообщений 

Частые вопросы и ответы по пайке

15

Физико-химические процессы при пайке

14

Паяние с травленой соляной кислотой

4

Пайка цинка

3

пайка стали 20Х13 с твердыми сплавами типа Т5К10, ВК*

3

Виды паяльников

3

Пайка золота

2

Напайка твердосплавных пластинок

2

Пайка самоваров

2

Пайка меди с алюминием

2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Основные понятия пайки
Классификация способов пайки по формированию паяного шва
Легкоплавкие припои для пайки
Средне и высокотемпературные припои
Пайка с флюсом
Бесфлюсовая пайка
Классификация видов пайки по способу нагрева
Совместимость металла и припоя
Пайка алюминия и его сплавов
• Пайка магния и его сплавов
Пайка меди и ее сплавов
Пайка сталей и чугуна
Пайка никеля и его сплавов
• Газовая пайка и наплавка - основы
Пайка титана и его сплавов
Основы проектирования пайки металлических изделий

НОВЫЕ ОБЪЯВЛЕНИЯ

Т 07:49 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

Т 07:49 Генераторы дизельные, электростанции АД500, АД500-

Т 07:20 Дизель генератор АД 30,

Т 07:20 Дизельгенераторы С32 , 800кВт Б/у

Т 07:20 Сварочные агрегаты адд 4004, адд 4004 вг и др

Т 07:20 Дизельные электростанции АД 150

Т 07:20 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

Т 07:20 Дизель генератор, электростанции АД 250, ДЭУ 250,

Т 20:16 Суппорт в сборе 1М63, 163, ДИП 300

Т 20:16 Запчасти для горизонтально-расточных станков

Т 20:16 Запчасти для 16К25

Т 20:16 Винт ходовой, винт поперечной подачи для станков

НОВОСТИ

16 Января 2017 17:17
Мойка подвижного состава

13 Января 2017 08:10
Частные дома из металлоконструкций (23 фото)

18 Января 2017 16:05
”Энергомашспецсталь” поставит в Испанию более 1000 тонн заготовок

18 Января 2017 15:56
Шведский выпуск стали в 2016 году вырос на 5,6%

18 Января 2017 14:04
”НЛМК” в 22 раза повысил степень очистки пыли на доменной печи №4

18 Января 2017 13:27
Почти 5 тонн золота добыли недропользователи Камчатки в 2016 году

18 Января 2017 12:20
”Росгеология” завершила работы на перспективной на медь и золото Салаирской площади

НОВЫЕ СТАТЬИ

Муфта и ниппель по ДТР

3 способа обустройства выносных балконов

Стабилизаторы напряжения и их особенности

Промышленное холодильное оборудование

Вентиляторные градирни и комплектующие для них

Электрические шкафы и комплектующие для них

Никелевая лента 79НМ

Разработка плана ликвидации аварий

Легкие каркасные металлоконструкции

Современные системы кондиционирования

Комплектующие и фурнитура для мебели

Обои для жилых и общественных помещений

Завод по производству металлоконструкций

Особенности и выбор рольставен

Охрана промышленных объектов и грузов

Мобильные лаборатории в промышленности

Металл для металлоконструкций

Деколирование подарочной посуды

Некоторые маркетинговые проблемы продаж промышленных товаров

Особенности получения займов в кредитных организациях

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.