Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Наплавка -> Многоэлектродная наплавка -> Многоэлектродная наплавка

Многоэлектродная наплавка

Оглавление статьи Страницы статьи:  1  2  3  ...  15  16  17  ...  30  31  32 

Развитие современной техники характеризуется непрерывным форсированием режимов эксплуатации машин и оборудования. В таких условиях большинство изделий машиностроения целесообразно изготовлять с износостойким, антикоррозионным или жаростойким покрытием рабочих поверхностей.

Повышение качества металла наиболее изнашиваемых деталей и узлов возможно различными способами. Наиболее простой, доступный и дешевый из них — наплавка, которая обеспечивает экономию металла, улучшает показатели работы оборудования и машин, сокращает их ремонтные простои, способствует повышению производительности общественного труда.

Одно из основных преимуществ наплавки — возможность получения биметаллических деталей, при этом на основу, изготовленную из углеродистой стали, наплавляют тонкий слой дорогого высоколегированного материала, надежно защищающего ее от воздействия окружающей среды или сопряженных деталей.

В таких условиях при максимальной долговечности изнашиваемой поверхности снижается расход дефицитных легирующих элементов: хрома, марганца, никеля, вольфрама, молибдена и др.

Наплавка развивается в двух основных направлениях: восстановительная — в ремонтном производстве и изготовительная — при производстве новых деталей. Восстановительная наплавка позволяет снизить потребность в запасных частях, уменьшить себестоимость ремонта, сэкономить большое количество металла. Изготовительную наплавку, позволяющую упрочнять наиболее изнашиваемые детали, эффективно использовать в серийном и массовом производстве при изготовлении различных валов, тракторных колес, зубьев ковшей экскаваторов, молотков и брони дробилок, ножей землеройных и почвообрабатывающих машин и др.

Процесс наплавки массовых деталей относительно легко может быть механизирован и автоматизирован.

При высокой культуре производства на машиностроительном заводе наплавленные детали могут быть подвергнуты 100 %-ному контролю.

В целях экономии дефицитных материалов (порошковой проволоки, ленты высоколегированных порошков и просто сварочной проволоки), представляется целесообразным широкое использование при наплавке порошкообразных материалов, подаваемых на поверхность детали, в слой флюса или непосредственно в ванну жидкого металла.

Наплавка низкоуглеродистой проволокой по слою легирующего порошка позволяет использовать доступные и недорогие ферросплавы и лигатуры, а порой и оксиды; создавать необходимые композиции сплавов защитного покрытия прямо на поверхности заготовки в ходе самого процесса; уменьшать стоимость наплавленного металла в 1,5 раза и более по сравнению со стоимостью сплавов, получаемых при наплавке порошковой или легированной проволокой; компенсировать долю участия основного металла в наплавленном подачей соответствующего количества порошка и получать уже в первом слое на 90—95 % его толщины наплавленный металл необходимого состава; снижать температуру ванны жидкого металла, измельчать структуру и уменьшать зону термического влияния.

Известные способы автоматической наплавки: одним электродом, лентой, несколькими лентами, электрошлаковая, лежачим электродом и др. обладают серьезными недостатками. Так, при наплавке одним электродом несмотря на простоту и надежность оборудования, устойчивость процесса и т. п. пока не удается получить более 30 кг наплавленного металла в час. При наплавке лентой имеются ограничения по ширине наплавленного слоя (100 мм) и производительности процесса (50 кг/ч). Использование электрошлаковой наплавки не позволяет подавать шихту непосредственно в зону плавления электрода, что снижает эффективность процесса легирований, и кроме того, вызывает значительный локальный перегрев отдельных участков основного металла и снижение их механических свойств. Простой и доступный способ наплавки лежачим электродом при ширине более 50 мм приводит к образованию непроваров и неравномерности глубины проплавления основного металла.

Применение многоэлектродной наплавки позволяет ликвидировать многие из перечисленных недостатков.

Известно, что производительность наплавки определяется сварочным током. При автоматической наплавке одной проволокой сварочный ток ограничивается сечением электрода и надежностью его контакта с токоподводом. Применение двух проволок и более снижает это ограничение, тдк как сечение электрода и площадь контакта с токоподводом увеличиваются, что позволяет увеличить и сварочный ток. Таким образом, автоматическая многоэлектродная наплавка оказывается эффективнее одноэлектродной. Увеличение числа электродов приводит также к качественным изменениям процесса их плавления, который переходит из непрерывного в импульсный. При этом уменьшается суммарное тепловложение и снижаются деформации, значительно (до 10—15%) уменьшается глубина проплавления основного металла, на 25 % снижается расход электроэнергии на килограмм наплавленного металла [10], улучшается качество наплавленного слоя, а следовательно, и его эксплуатационные характеристики. Возможность подачи легирующей шихты в слой флюса почти вдвое снижает стоимость наплавленного металла, улучшает использование электроэнергии, повышает производительность труда.

Н. Н. Бенардос еще в 1893 г. предложил использовать несколько электродов с общим токоподводом для получения ванны жидкого металла.

Затем, в 1943 г. А. И. Коренной предложил способ автоматической сварки несколькими электродами для соединения деталей бронеконструкций. В дальнейшем этот способ и построенная по его принципу аппаратура были усовершенствованы и получили практическое распространение.

В период 1941—1945 гг. в ИЭС им. Е. О. Патона проводились работы по созданию многодуговой и многоэлектродной сварки под флюсом. В 1943 г. Б. Е. Патон, А. М. Макара и С. А. Островская предложили сварку несколькими раздвинутыми дугами, которую в дальнейшем, в послевоенные годы, когда были применены тонкая электродная проволока и повышенная плотность тока, стали широко использовать для изготовления изделий из легированных сталей. С 1953 г. начинают появляться систематические публикации по много

электродной наплавке. В ИЭС им. Е. О. Патона разрабатываются многоэлектродные аппараты А-372, А-475, А-480, А-513 и др. Во Всесоюзном научно-исследовательском институте железнодорожного транспорта (ВНИИЖТе) создаются конструкции механизмов для подачи проволоки и многоэлектродные установки МН-А-1, МН-ОК-1, ЦНИИ-МА7, используемые на железнодорожном транспорте для наплавки автосцепки, колес локомотивов и других деталей [10].

В 1962 г. Н. П. Емельянов [10] опубликовал результаты своих исследований многоэлектродной наплавки, где описал ее сущность, показал характер плавления электродов и дал технологические рекомендации для восстановления и упрочнения с ее помощью деталей железнодорожного транспорта. Н. П. Емельянов подчеркнул, что многоэлектродная автоматическая наплавка под флюсом — весьма эффективный и высокопроизводительный способ восстановления изношенных деталей, который можно применять при изготовлении биметаллических изделий и для нанесения износостойкого или антикоррозионного покрытия.

Интересные работы по созданию новых конструкций подающего механизма к многоэлектродным аппаратам выполнены и в других организациях страны.

В 1961 г. под руководством А. П. Сущенко разработана принципиально новая схема механизма для одновременной подачи нескольких электродных проволок в зону сварки. Созданный на ее основе механизм обеспечил исключительно надежную подачу проволоки любого диаметра (от 0,5 до 10 мм) в любом количестве. В работах А. П. Сущенко нашли дальнейшее развитие положения работы и впервые подробно рассмотрено импульсное горение дуг на электродах при наплавке на постоянном токе. В продолжение этих работ освоена технология автоматической многоэлектродной наплавки. Выявлена зависимость состава наплавленного слоя и глубины проплавления основного металла от характера плавления электродов. Показаны пути обеспечения заданного химического состава и комплекса эксплуатационных свойств рабочего слоя.

Для установления физической сущности плавления электродов и формирования наплавленного слоя использована теория электрического поля. Рассмотрены физико-химические процессы, протекающие на торцах

Оглавление статьи Страницы статьи:  1  2  3  ...  15  16  17  ...  30  31  32 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.08.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:39 Круг нержавеющий AISI 321

12:39 Круг нержавеющий Aisi 321

10:27 Круг 10Г2, пруток стальной 10Г2

10:26 Круг стальной г/к 35ХГСА по ГОСТ 2590-2006

10:26 Круг стальной г/к 30ХГСА по ГОСТ 2590-2006

10:26 Круг стальной г/к 25Х1МФ по ГОСТ 2590-2006

10:26 Круг стальной г/к 20ХН3А по ГОСТ 2590-2006

10:26 Круг 18Х2Н4МА, пруток стальной 18Х2Н4МА

10:25 Круг, пруток стальной 13Х14Н3В2ФР-Ш

10:25 Круг стальной г/к 10Х17Н13М2Т по ГОСТ 2590-2006

НОВОСТИ

21 Августа 2017 17:25
Продвинутая система пожаротушения в японской деревне

21 Августа 2017 15:27
142-летний судоподъемник Андертон (27 фото, 1 видео)

22 Августа 2017 07:19
”Северсталь” запустила первый вагоноопрокидыватель, изготовленный собственными силами

21 Августа 2017 17:37
Артель ”Восток-2” к середине августа добыла 40 кг золота

21 Августа 2017 16:58
Компания ”Курганхиммаш” продолжает изготовление партии колонных аппаратов

21 Августа 2017 15:02
Перуанская добыча железной руды за полгода выросла на 9,5%

21 Августа 2017 14:48
”Северский трубный завод” модернизировал систему управления редукционно-растяжного стана

НОВЫЕ СТАТЬИ

Плитка строительная керамическая

Прессовое оборудование для мебельной промышленности

Испытания гидроизоляции

Дверные ручки и фурнитура

Основы выбора сварочных аппаратов ММА

Аксессуары для смартфонов

Тканые и сварные стальные сетки

Алюминиевые и оцинкованные фасадные системы

Плиты ПБ – отличительные особенности изготовления и применения

Сварная балка как аналог обычной горячекатаной

Объемные буквы и световые короба как распространенные виды наружной рекламы

Как проводятся такелажные работы при перевозке станков

Высококачественная мебель на заказ

Грамотный подход к выбору материалов и технологии изготовления межкомнатных дверей

Выбор практичных и сочетающихся с интерьером межкомнатных дверей

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "Русский металл" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.