Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Наплавка -> Электроконтактная наплавка -> Электроконтактная наплавка

Электроконтактная наплавка

Оглавление статьи Страницы статьи:  1  2  3  ...  12  13  14  15  ...  24  25  26 

При достижений начального значения нагрузки Рр дополнительно деформируется присадочный металл. В результате дополнительной деформации усилие Рр и давление в контакте вновь уменьшаются (до нуля). При этом в контактах присадочная проволока — металл основы и присадочная проволока — электрод возможен перегрев и взрывообразный выброс металла. Чтобы не допускать перегрева и поддерживать температуру, близкую к температуре плавления (кривая Т в точке С), освобождая наплавляющий ролик от жесткого упора, вновь увеличивают Рр и давление.

При этом, как и в течение промежутка времени «аb», продолжается деформация до очередного ограничения в точке d при постоянном усилии прижатия наплавляющего ролика Рэ. Давление падает в течение этого промежутка времени вследствие продолжающегося роста площади контакта, а температура вновь снижается вследствие падения плотности тока и увеличения площади теплообмена.

Для очередного увеличения температуры присадки деформацию вновь ограничивают (точка d) и т. д.

Из характера изменения температуры в контакте присадка — металл основы следует, что для поддержания максимального ее значения при растормаживании наплавляющего электрода значения единичных деформаций (е1 e2, e3,...) и периодов заторможения наплавляющего ролика должны быть минимальными.

При большой частоте остановок наплавляющего ролика и малых периодах торможения температура изменяется плавно (Tдред на рис. 36).

Максимальное снижение энергоемкости электроконтактной наплавки (на 35—40%) происходит при частоте торможений 75—100 Гц и периодах торможений 0,005— 0,05 с.

Схема наплавки нейтральным роликом [24, 32]. Принципиальным отличием схемы электроконтактной наплавки нейтральным роликом является то, что импульсы тока подаются в зону наплавки через наплавляемую деталь и присадочную проволоку (рис. 39,а). Наплавляющий ролик в этом случае передает усилие, необходимое для деформации присадочной проволоки, и фиксирует положение витков спирального валика, обеспечивая их перекрытие. В связи с этим ролик изготавливается из жаропрочной стали, а режим наплавки характеризуется

малым значением тока и большим давлением в контакте. Нагрев присадочной проволоки и поверхностного слоя металла основы происходит при этом преимущественно в области контакта вследствие своеобразного распределения плотности тока (рис. 39,6).

Прочность соединения наплавленного металла с основой при наплавке с нейтральным роликом значительно ниже, чем при наплавке с токоподводящим наплавляющим роликом, вследствие ограничения силы тока наплавки, который можно подвести через присадочную проволоку, и составляет 10—12 кгс/мм2.

Лучшие результаты (18—20 кгс/мм2) дает наплавка по схеме с нейтральным роликом и искусственно созданной шероховатостью на поверхности, например нарезкой рваной резьбы.

Схема наплавки с двумя наплавляющими роликами и двумя присадочными проволоками. При наплавке по схеме с двумя наплавляющими роликами (рис. 40) под каждый из них подается присадочная проволока, а процесс начинают так же, как по схеме наплавки узких поясков. После наплавки замкнутого кольцевого пояска 5 наплавляющие ролики 3 перемещают в противоположные стороны с шагом, обеспечивающим перекрытие соседних витков, подобно основной технологической схеме.

Рассматриваемая схема наплавки вдвое производительнее. Поскольку ток наплавки при данной схеме проходит через участок изделия 4, заключенный между

двумя наплавляющими роликами, длина которого в процессе наплавки изменяется, ей присущи недостатки основной технологической схемы, связанные с вводом во вторичный контур переменного сопротивления. Использование ее целесообразно при наплавке участков деталей большой длины (свыше 200 мм).

Схема рельефной наплавки. Нагрев и деформация происходят в приконтактных объемах проволоки и основной детали, прилегающих к зоне соединения.

Однако при нагреве зоны часть тепла расходуется на нагрев всего объема проволоки и основной детали вследствие их высокой теплопроводности.

Для снижения энергоемкости наплавки необходимо уменьшить нагреваемые объемы металла.

Один из способов локализации тепловыделения — сокращение длительности импульса тока при одновременном увеличении генерируемого им количества тепла в контакте присадочная проволока — металл основы. Эффект локализации тепловыделения достигается сокращением времени теплообмена. Для увеличения количества генерируемого в контакте тепла при электроконтактной наплавке можно искусственно увеличить переходное сопротивление присадочная проволока — металл основы образованием на поверхности контакта металла основы

и проволоки рельефов глубиной 0,05—0,1 диаметра присадочной проволоки.

Рельефы наносятся роликами с насечкой непосредственно перед соединением присадочной проволоки и металла основы (рис. 41).

Площадь контакта присадочной проволоки с поверхностью металла основы при рельефной наплавке значительно меньше, чем при наплавке по обычной схеме.

В результате создается значительная плотность тока, обеспечивающая интенсивный нагрев зоны соединения, энергоемкость наплавки при равной прочности соединения присадки с основой снижается на 20—25%, а производительность процесса увеличивается.

Схема наплавки с постоянной скоростью пластической деформации присадочной проволоки. Неравномерная прочность соединения присадки с основой в пределах единичной площадки при электроконтактной наплавке является следствием уменьшения скорости деформации присадочной проволоки и поверхностного слоя металла детали за время действия импульса тока. Для получения стабильной прочности соединения присадочного и основного металла по каждой единичной площадке разработан способ наплавки, заключающийся в следующем.

Присадочную проволоку 2 (рис. 42) помещают между поверхностью металла основы 3 и роликом 1. К вращающейся основе и ролику, совершающему возвратно-поступательное движение, подводят импульсный электрический ток. За время прохождения импульса тока при движении ролика к основе деформируют участок нагретой присадочной проволоки на заданную величину с постоянной оптимальной скоростью. При этом на поверхность металла основы наплавляется единичная площад-

Оглавление статьи Страницы статьи:  1  2  3  ...  12  13  14  15  ...  24  25  26 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.06.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

16:41 Ремонт ванной комнаты в Москве

16:19 Угол нержавеющий равнополочный шлифованный 30х30х3.0 AISI 304

16:16 Угол нержавеющий равнополочный шлифованный 25х25х3,0 AISI 304

16:15 Угол нержавеющий равнополочный шлифованный 20х20х3,0 AISI 304

16:11 Угол нержавеющий холоднотянутый AISI 304 10х10х2.0 длина 3м

16:08 Угол нержавеющий горячекатаный 15х15х3,0 AISI 304

16:05 Тавры нерж.AISI 304 тип Т 40х40х4 - под заказ

15:48 Труба б/у 1020 ст.14,820 ст.10

14:53 Труба нержавеющая шлифованная 60х60х2,0 AISI 304

14:36 Трубы нержавеющие матовые 50х50х2.0 AISI 316L

НОВОСТИ

18 Октября 2017 17:16
Мангал из барабана от стиральной машины

17 Октября 2017 12:22
Вертикально-подъемный мост Тикуго (28 фото, 1 видео)

19 Октября 2017 13:13
Южнокорейский экспорт холоднокатаного листа за 9 месяцев вырос на 10,7%

19 Октября 2017 12:15
Морской терминал ”Восточной горнорудной компании” перевалил 4 млн. тонн

19 Октября 2017 11:33
”ТМК” сообщает об операционных результатах за 3-й квартал и 9 месяцев 2017 года

19 Октября 2017 10:44
УК ”Кузбассразрезуголь” наращивает объемы производства

19 Октября 2017 10:17
”Северсталь” сообщает свои финансовые результаты за 3-й квартал и 9 месяцев 2017 года

НОВЫЕ СТАТЬИ

Какими характеристиками отличаются провода

Дверные замки - какие надежнее?

Конструкции и рекомендации по выбору погрузочных эстакад

Душевые уголки: вид, форма и конструкция

Особенности выбора окон и их отличия

Хрустальные торшеры – роскошь, ставшая доступной

Сравнение каркасных и кирпичных домов

Плёночный теплый пол - устройство и основные компоненты

Промышленные светодиодные светильники: особенности применения

Цеха, ангары и гаражи из сэндвич-панелей

Какие бывают опоры для трубопроводов

Типовые системы капельного орошения в сельском хозяйстве

Лампы накаливания - выбор, проверенный годами

Виды и применение в строительстве сортового проката

Ювелирные изделия - пробы и лигатуры

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "Русский металл" предлагает изготовление металлоконструкций.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.