Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Наплавка -> Электроконтактная наплавка -> Электроконтактная наплавка

Электроконтактная наплавка

Оглавление статьи Страницы статьи:  1  2  3  ...  12  13  14  15  ...  24  25  26 

При достижений начального значения нагрузки Рр дополнительно деформируется присадочный металл. В результате дополнительной деформации усилие Рр и давление в контакте вновь уменьшаются (до нуля). При этом в контактах присадочная проволока — металл основы и присадочная проволока — электрод возможен перегрев и взрывообразный выброс металла. Чтобы не допускать перегрева и поддерживать температуру, близкую к температуре плавления (кривая Т в точке С), освобождая наплавляющий ролик от жесткого упора, вновь увеличивают Рр и давление.

При этом, как и в течение промежутка времени «аb», продолжается деформация до очередного ограничения в точке d при постоянном усилии прижатия наплавляющего ролика Рэ. Давление падает в течение этого промежутка времени вследствие продолжающегося роста площади контакта, а температура вновь снижается вследствие падения плотности тока и увеличения площади теплообмена.

Для очередного увеличения температуры присадки деформацию вновь ограничивают (точка d) и т. д.

Из характера изменения температуры в контакте присадка — металл основы следует, что для поддержания максимального ее значения при растормаживании наплавляющего электрода значения единичных деформаций (е1 e2, e3,...) и периодов заторможения наплавляющего ролика должны быть минимальными.

При большой частоте остановок наплавляющего ролика и малых периодах торможения температура изменяется плавно (Tдред на рис. 36).

Максимальное снижение энергоемкости электроконтактной наплавки (на 35—40%) происходит при частоте торможений 75—100 Гц и периодах торможений 0,005— 0,05 с.

Схема наплавки нейтральным роликом [24, 32]. Принципиальным отличием схемы электроконтактной наплавки нейтральным роликом является то, что импульсы тока подаются в зону наплавки через наплавляемую деталь и присадочную проволоку (рис. 39,а). Наплавляющий ролик в этом случае передает усилие, необходимое для деформации присадочной проволоки, и фиксирует положение витков спирального валика, обеспечивая их перекрытие. В связи с этим ролик изготавливается из жаропрочной стали, а режим наплавки характеризуется

малым значением тока и большим давлением в контакте. Нагрев присадочной проволоки и поверхностного слоя металла основы происходит при этом преимущественно в области контакта вследствие своеобразного распределения плотности тока (рис. 39,6).

Прочность соединения наплавленного металла с основой при наплавке с нейтральным роликом значительно ниже, чем при наплавке с токоподводящим наплавляющим роликом, вследствие ограничения силы тока наплавки, который можно подвести через присадочную проволоку, и составляет 10—12 кгс/мм2.

Лучшие результаты (18—20 кгс/мм2) дает наплавка по схеме с нейтральным роликом и искусственно созданной шероховатостью на поверхности, например нарезкой рваной резьбы.

Схема наплавки с двумя наплавляющими роликами и двумя присадочными проволоками. При наплавке по схеме с двумя наплавляющими роликами (рис. 40) под каждый из них подается присадочная проволока, а процесс начинают так же, как по схеме наплавки узких поясков. После наплавки замкнутого кольцевого пояска 5 наплавляющие ролики 3 перемещают в противоположные стороны с шагом, обеспечивающим перекрытие соседних витков, подобно основной технологической схеме.

Рассматриваемая схема наплавки вдвое производительнее. Поскольку ток наплавки при данной схеме проходит через участок изделия 4, заключенный между

двумя наплавляющими роликами, длина которого в процессе наплавки изменяется, ей присущи недостатки основной технологической схемы, связанные с вводом во вторичный контур переменного сопротивления. Использование ее целесообразно при наплавке участков деталей большой длины (свыше 200 мм).

Схема рельефной наплавки. Нагрев и деформация происходят в приконтактных объемах проволоки и основной детали, прилегающих к зоне соединения.

Однако при нагреве зоны часть тепла расходуется на нагрев всего объема проволоки и основной детали вследствие их высокой теплопроводности.

Для снижения энергоемкости наплавки необходимо уменьшить нагреваемые объемы металла.

Один из способов локализации тепловыделения — сокращение длительности импульса тока при одновременном увеличении генерируемого им количества тепла в контакте присадочная проволока — металл основы. Эффект локализации тепловыделения достигается сокращением времени теплообмена. Для увеличения количества генерируемого в контакте тепла при электроконтактной наплавке можно искусственно увеличить переходное сопротивление присадочная проволока — металл основы образованием на поверхности контакта металла основы

и проволоки рельефов глубиной 0,05—0,1 диаметра присадочной проволоки.

Рельефы наносятся роликами с насечкой непосредственно перед соединением присадочной проволоки и металла основы (рис. 41).

Площадь контакта присадочной проволоки с поверхностью металла основы при рельефной наплавке значительно меньше, чем при наплавке по обычной схеме.

В результате создается значительная плотность тока, обеспечивающая интенсивный нагрев зоны соединения, энергоемкость наплавки при равной прочности соединения присадки с основой снижается на 20—25%, а производительность процесса увеличивается.

Схема наплавки с постоянной скоростью пластической деформации присадочной проволоки. Неравномерная прочность соединения присадки с основой в пределах единичной площадки при электроконтактной наплавке является следствием уменьшения скорости деформации присадочной проволоки и поверхностного слоя металла детали за время действия импульса тока. Для получения стабильной прочности соединения присадочного и основного металла по каждой единичной площадке разработан способ наплавки, заключающийся в следующем.

Присадочную проволоку 2 (рис. 42) помещают между поверхностью металла основы 3 и роликом 1. К вращающейся основе и ролику, совершающему возвратно-поступательное движение, подводят импульсный электрический ток. За время прохождения импульса тока при движении ролика к основе деформируют участок нагретой присадочной проволоки на заданную величину с постоянной оптимальной скоростью. При этом на поверхность металла основы наплавляется единичная площад-

Оглавление статьи Страницы статьи:  1  2  3  ...  12  13  14  15  ...  24  25  26 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.06.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

16:21 Продам станки б/у

11:38 Закладные детали по серии 3.407-115 в2,в5.

11:15 Скобы монтажные от компании-производителя ООО ЮгпромМетиз

11:02 Фундаментный крепеж от компании ООО ЮгПромМетиз

10:19 Нестандартные изделия по чертежам заказчиков

10:13 Футеровочные гайки от компании-производителя ЮгПромМетиз

10:09 Скобы крепления ковшей по DIN 745

10:00 Рымы подъемные от компании-производителя ЮгПромМетиз

09:51 Гайки для фланцевых соединений по Гост 9064-75

09:38 Гайки для фланцевых соединений по ОСТ 26-2041-96

НОВОСТИ

19 Июля 2018 17:27
Необычные строительные инструменты и приспособления

21 Июля 2018 13:12
Добыча угля ”Vale” во 2-м квартале выросла на 18,1%

21 Июля 2018 12:11
”Красцветмет” по итогам 2017 года произвел 220 тонн золота

21 Июля 2018 11:52
”Метинвест” привлекает кредит для расширения производственных мощностей ”ММК им. Ильича”

21 Июля 2018 10:49
”Запорожсталь” сократил сброс сточных вод на 4,8 млн. кубометров благодаря новой градирне

21 Июля 2018 09:59
”ОМК” выбрала поставщика основного оборудования для создания производства бесшовных труб

НОВЫЕ СТАТЬИ

Изделия из металла в интерьере квартиры

Процедура строительства каркасного дома

Дома и недвижимость за рубежом

Стальные трубы б/у – вариант сэкономить бюджет строительства

Трубы б/у с сечением 219 мм: применение и достоинства

Алюминиевые окна и двери - основные особенности

Основные типы подшипников для современных механизмов

Стальные мелющие шары для помола сырья

Настенные светильники и бра - стилевые направления

Алюминиевый листовой прокат - характерные особенности и применение

Особенности теплообменного оборудования для пищевой промышленности

Пишущие принадлежности как отличный подарок в деловой сфере

Основы поиска работы в промышленной сфере

Распространенные виды грузоперевозок в промышленной и логистической деятельности

Асбестовые материалы, полотно и ткани в промышленности

Сталь конструкционная углеродистая

Сталь конструкционная низколегированная

Лист нержавеющий AISI 409 - особенности марки и применение

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2018 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.