Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Газопламенная обработка материалов -> Газопламенная обработка материалов

Газопламенная обработка материалов

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  ...  9  10  11  ...  18  19  20 

значенного для фрезерных станков с программным управлением.

Вторая система (машина «Алмаз»), в отличие от первой, — замкнутая с обратной связью по перемещению.

Запись программы движения резаков по контуру и поворота трехрезаковых блоков производится на магнитную ленту. По структурному построению привод координаты представляет дискретную следящую систему с импульсным датчиком обратной связи и преобразователем числа в управляющее напряжение, которое на выходе из дешифратора имеет вид ступенчатой функции. Быстродействие следящей системы достаточное для выполнения фигурной резки со скоростью до 4 м/мин. Система программного управления технологическими операциями предусматривает запись до 35 команд импульсным кодом на двух дорожках магнитной ленты с последовательным вводом информации с ленты при воспроизведении.

Третья система аналогична предыдущей, но отличается в основном тем, что имеет встроенный интерполятор и перфоленту. Она использована на отечественных машинах типа «Кристалл».

Наконец, четвертая система (машина «СГУ-Луч») построена по принципу линейной аппроксимации траектории струи режущего кислорода — эквидистанты Ф (Х) контура, заданного функцией f (х) (рис. 90). В результате аппроксимации эквидистанта Ф (х) будет представлена в виде отрезков АI с приращением по координатам Ах и А у. Программа приращения задается в дискретной форме, где величина минимального

элементарного перемещения резака (цена импульса). В нашем случае = 1 мм.

Величина приращений Ах и А у ограничена и зависит от конструкции привода.

Приращения Ах и А у отрабатываются координатными следящими приводами за один цикл, в результате чего получается суммарное перемещение резака А1.

На программоносителе (бумажная перфолента от ЭВМ «Минск») каждому шагу аппроксимации АI соответствует кадр, который содержит информацию о перемещении резака (приращения координат Ах и Ау) и необходимые технологические команды. Кадр занимает четыре строчки. При отработке одного кадра информации, заданной в двоичном коде, получаем прямую А1, тангенс угла наклона а которой равен отношению ординат tg а = Ах/Ау. Такими отрезками можно аппроксимировать любую кривую.

В системе применен дифференциально-суммирующий привод с нереверсивными синхронизированными однооборотными муфтами, управляемыми магнитами от программоносителя. Разрешающая способность системы — 1 мм.

Известно, что для получения высокой точности воспроизведения контура разрешающая способность ЦПС должна составлять порядка 0,1 мм.

Реализовать столь малую величину импульса в данной системе затруднительно без значительного усложнения конструкции дифференциально-суммирующего привода. Поэтому применение систем с линейно-механической интерполяцией практически оправдано при отсутствии повышенных требований к качеству (геометрии) поверхности реза.

Таким образом, современное развитие цифровых программных систем управления для машин термической резки характеризуется преимущественным применением в качестве программоносителя бумажной перфоленты вместо магнитной; изысканием упрощенных способов программирования исходных данных с использованием линейно-механических и других видов интерполяторов; совершенствованием систем автономного программного управления технологическими и вспомогательными операциями; использованием более совершенных следящих приводов; повышением разрешающей способности электротехнических средств и системы в целом.

Цифровое программное управление газорезательными машинами по сравнению с системой фотоэлектронного копирования позволяет оптимизировать режимы и процесс резки, что обеспечивает повышение производительности резки (на 10—20%), точности и качества поверхности реза; повысить степень автоматизации, работ, благодаря чему облегчаются условия труда резчика и появляется возможность обслуживания одним оператором одновременно двух-трех машин; сократить трудоемкость подготовки программ в несколько раз и повысить точность их изготовления, так как задания даются непосредственно в аналитической форме и исключается вероятность субъективной ошибки исполнителей при изготовлении копирчертежей.

К ограничениям, присущим системам цифрового программного управления, следует отнести повышенные по сравнению с ФКС капитальные затраты на приобретение необходимого электронного и вычислительного оборудования для подготовки и реализации

программ, необходимость организации математического обеспечения работ и подготовки соответствующих специалистов, обслуживающих сравнительно сложную электронную аппаратуру машин вычислительной техники.

Мировая практика создания машин термической резки показывает, что стационарные машины с программным управлением для термической резки более рационально использовать на заводах, обеспеченных ЭВМ, а на предприятиях, не имеющих ЭВМ, целесообразно применять машины с фотоэлектронной системой управления.

В ближайшем будущем следует ожидать возрастающего применения обеих систем управления в областях их рационального использования.

3. ТИПИЗАЦИЯ МАШИН ТЕРМИЧЕСКОЙ РЕЗКИ

Разнообразие типов машин одного и того же вида, с несовпадающими технико-эксплуатационными параметрами, удорожает их производство из-за уменьшения серийности выпуска, затрудняет выбор оптимальных типов потребителями. Кроме того, наличие различных конструкций машин на одном предприятии усложняет условия их эксплуатации.

Важное значение для устранения этих ограничений имеет типизация машин термической резки с целью определения наименьшего количества типоразмеров машин данного вида, необходимого для выполнения определенных технологических операций резки с учетом специфики различных производств.

Основой типизации машин является классификация их по определенным признакам (табл. 25).

Применительно к приведенной в табл. 25 классификационной схеме вопросы типизации разработаны для следующих видов машин: стационарных переносных машин общего назначения для плоскоконтурной и пространственно-контурной резки.

Остальные виды машин трудно поддаются типизации ввиду большого разнообразия специфических требований, предъявляемых к ним.

Следует отметить, что вид газорезательного оборудования (общего назначения или специализированного) следует выбирать с учетом условий его возможного применения. Оборудование общего назначения наиболее эффективно на участках кислородной резки с небольшим или средним объемом повторяющихся деталей. Применение специализированных машин и установок экономически оправдано при большом объеме однотипных операций резки.

Ниже рассмотрены основные предпосылки и принцип построения типоразмерных рядов машин общего назначения для плоскоконтурной и пространственно-контурной резки.

Типоразмерный ряд машин для плоскоконтурной резки. Для современных стационарных машин для резки листов типично сочетание элементов универсальности с достаточной специализацией применительно к основным технологическим и типоразмерным требованиям производства. Зто достигается широким использованием унифицированных систем и узлов, позволяющих на одной конструктивной базе создавать несколько модификаций машин, чтобы удовлетворить разнообразным требованиям потребителей как в части габаритов, так и в части технико-эксплуатационных характеристик.

Такой подход к созданию машин обеспечивает возможность с наименьшими затратами оснащать их наиболее современными системами контурного управления, блоками технологических команд, видами специальной аппаратуры и т. д.

С учетом этих предпосылок, а также опыта отечественного и зарубежного производства разработан типоразмерный ряд машин. Указанный ряд построен на основе ограниченного количества (четырех) базовых моделей, позволяющих с помощью использования унифицированных узлов создавать 60 различных модификаций машин, предусмотренных ГОСТ 5614—74.

В качестве обобщенного классификационного параметра (измерителя), характеризующего базовую модель, принята ширина площади обработки, приведенная ниже, поскольку она в наибольшей мере определяет конструктивные и весовые различия машин.

Базовая модель....................... № 1 № 2 № 3 № 4

Ширина обработки, мм......................>5.......2,5—5 1,5—2 1—1,5

Как указывалось выше, обобщенный параметр (ширина площади обработки) базовой модели предопределяет в определенной степени выбор конструктивной схемы машины.

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  ...  9  10  11  ...  18  19  20 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2012.02.01   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

15:43 Арматура А500С d 6-28 мм

10:58 Дизель генератор АД 200, ДЭУ 200, ДГУ 200

10:58 Сварочные аппараты АДД ПР2х2502, стационарный,шасс

10:38 Калибровка круг Ст35 Д4-60мм

10:37 Пруток калиброванный Ст20 Д4-60мм

10:37 Пруток горячекатаный Ст20 Д 10-300мм

09:57 Уголок г/к 50х50х5 из стали AISI 316 L

08:44 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

06:07 МУВП ( муфта упругая втулочно-пальцевая)

06:07 Колесо крановое 710х100

НОВОСТИ

20 Июля 2017 17:27
Роботизированная кладка кирпича

16 Июля 2017 17:19
Гейтсхедский мост тысячелетия (25 фото, 1 видео)

20 Июля 2017 17:35
Вьетнамский импорт стального лома в июне 2017 года упал на 14,7%

20 Июля 2017 16:59
Группа ”НЛМК” модернизирует производство горячего проката на Липецкой площадке

20 Июля 2017 15:40
Запасы железной руды в китайских портах за неделю выросли на 0,4%

20 Июля 2017 14:06
Добыча угля в Кузбассе по сравнению с прошлым годом выросла на 10%, экспорт – на 15%

20 Июля 2017 13:23
Перуанская добыча железной руды за 5 месяцев выросла на 9,1%

НОВЫЕ СТАТЬИ

Сверление – особенности процесса

Особенности емкостей и баков отопительных систем в промышленности

Кованые конструкции для благоустойства участка

Вилочные погрузчики для складов и производств

Металлические сейфы для хранения ценностей

Основные параметры и особенности использования стабилизаторов напряжения

Использование алюминиевого профиля в мебельной промышленности

Основные аспекты применения защитных тентов

Выбор современных водосточных систем и их особенности

Дроны и квадракоптеры в промышленности

Насосы шестеренные для перекачивания вязких сред

Электрические котлы для отопления дома - особенности выбора

Ремонт производственных помещений

Автономная газификация и отопление дома

Основные типы керамических отделочных материалов

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "Русский металл" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.