Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Электронно-лучевая сварка -> Сварочные электронные пушки -> Сварочные электронные пушки

Сварочные электронные пушки

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Для получения больших плотностей тока выбирают металлы с небольшой работой выхода, допускающие нагрев до высоких температур при сравнительно малой скорости испарения металла. Наиболее широко распространенные металлы, отвечающие этим требованиям, — вольфрам и тантал. В нашей стране, а в последнее время и за рубежом в сварочных пушках применяются лантанборидные (LaB6) катоды.

Конструктивно катоды сварочных электронных пушек выполняются прямонакальными и с косвенным подогревом.

Прямонакальные катоды более просты в изготовлении, но они имеют ряд существенных недостатков. В первую очередь, в прямонакальном катоде трудно обеспечить правильную геометрическую форму эмиттирующей поверхности. Кроме того, ток, разогревающий прямонакальный катод, создает значительное магнитное поле, отклоняющее эмиттированные электроны от оси прожектора. В связи с этим при разогреве катода переменным током пучок «раздваивается», а при разогреве постоянным током наблюдается сдвиг оси пучка относительно геометрической оси прожектора. Для компенсации этого сдвига необходимо введение специальных корректирующих механических или электрических устройств. Преимущество катодов с косвенным подогревом перед прямонакальными заключается и в том, что первые имеют более равномерную по поверхности плотность эмиссии и являются эквипотенциальными. Расчет параметров цепи нагрева прямонакального катода и его тока эмиссии с достаточной для практики точностью производится по следующим основным соотношениям. Для значений тока накала Iн и напряжения накала Uн:

где I1 и U1 — соответственно ток накала и напряжение накала единичного катода (т. е. цилиндра диаметром 1 см и длиной 1 см), являющиеся функциями одной лишь температуры катода; lк и dK — соответственно длина и диаметр подогревателя или прямонакального катода.

Различные типы катодов сварочных электронных пушек схематически показаны на рис. 54.

При определении срока службы катода исходя из скорости испарения его материала (например, срок службы прямонакальных катодов приравнивается ко времени испарения 10% поперечного сечения) оказывается, что катоды должны были бы работать доста-

точно долго — десятки и сотни часов (рис. 55 и 56). Практически срок службы прямонакальных катодов, изготовленных из танталовой ленты толщиной 0,1 мм, при средней плотности тока 5 а/см2 составляет менее одного часа, тогда как из кривых рис. 56 ожидаемый срок службы катода составляет несколько десятков часов.

точно долго — десятки и сотни часов (рис. 55 и 56). Практически срок службы прямонакальных катодов, изготовленных из танталовой ленты толщиной 0,1 мм, при средней плотности тока 5 а/см2 составляет менее одного часа, тогда как из кривых рис. 56 ожидаемый срок службы катода составляет несколько десятков часов.

Такое расхождение между расчетными и практическими результатами объясняется тем, что разрушение катода вызывается в первую очередь не испарением его, а окислением, ионной бомбардировкой

Такое расхождение между расчетными и практическими результатами объясняется тем, что разрушение катода вызывается в первую очередь не испарением его, а окислением, ионной бомбардировкой

и локальными превращениями в материале катода (рис. 57).

На основании приведенного материала можно сделать заключение, что прямонакальные катоды рационально применять в аппаратуре с небольшими плотностями тока (1—2 а/см2) или с небольшими циклами работы.

Основное преимущество лантанборидных катодов по сравнению

с металлическими — высокая эмиссионная способность

при относительно низкой рабочей температуре (1600° С). Но на работу лантанборидного катода оказывают влияние пары свариваемых материалов. При сварке материалов с температурой плавления ниже

1500—1600° С не наблюдается металлизация лантанборидного катода парами свариваемых материалов. Время работы катода и стабильность его параметров определяются в этом случае степенью разрушения поверхности катода ионной бомбардировкой и уносом материала катода в составе легкоплавких эвтектик, образующихся на его поверхности в результате взаимодействия с парами свариваемых металлов. Последний фактор разрушения катода имеет прямую связь с интенсивностью парового потока, достигающего поверхности катода.

В большинстве случаев электронным лучом необходимо сваривать различные сплавы, содержащие в своем составе тугоплавкие элементы, металлизирующие во время сварки поверхность лантанборидного катода. Ввиду того что температура плавления этих элементов выше рабочей температуры катода, они остаются на его поверхности, и катод постепенно теряет свои эмиссионные свойства. Время, в течение которого происходит потеря эмиссионных свойств катода до такой степени, что требуется замена его, зависит от содержания тугоплавких элементов в свариваемом материале и мощности парового потока (последний зависит от толщины свариваемого изделия и расстояния от изделия до катода).

Для увеличения продолжительности работы лантанборидного катода необходимо повышать его рабэчую температуру до 1900— 2000° С по мере металлизации эмиттирующей поверхности катода. В таком случае, несмотря на металлизацию тугоплавкими элементами поверхности катода, последний не изменяет своих эмиссионных свойств. Это можно объяснить тем, что при температурах порядка 2000° С подвижность атомов лантана значительно возрастает и они проникают через напыленный слой на поверхность катода, обеспечивая высокие эмиссионные свойства. Время непрерывной стабильной работы катода в таком режиме определяется испарением его и разрушением ионной бомбардировкой.

После нескольких часов работы при больших токах (400—500 ма) и вакууме в сварочной камере порядка 10-4 мм рт. ст. в центре лантанборидного катода вследствие ионной бомбардировки образуется углубление диаметром около 0,3—0,4 мм, которое за 8—12 ч непрерывной работы может распространиться на всю толщину катода (1,2—1,5 мм). При общей эмиттирующей поверхности катода (примерно 12 мм2) в отмеченном режиме работы столь незначительное

уменьшение эмитирующей поверхности катода практически не влияет на величину тока пучка. Однако изменение геометрии поверхности катода приводит к нарушению условий формирования пучка в прикатодной области, выражающемуся в изменении токопрохождения через анодное отверстие, и к нарушению величины угла расходимости и положения кроссовера.

Более стабильные параметры пучка обеспечивают массивные (толщиной 1—1,5 мм) металлические катоды, подогреваемые путем электронной бомбардировки.

Нагрев катодов излучением вольфрамовой спирали, хотя и отличается своей простотой, оказывается неэкономичным при необходимости достижения температуры эмиттирующей поверхности катода свыше 1600—1700° С (рис. 58). Такой способ нагрева не обеспечивает высокой стабильности параметров электронного пучка в случае использования лантанборидных катодов, если свариваются материалы, имеющие в своем составе туго

плавкие элементы, и вообще не применим для нагрева массивных высокотемпературных катодов (Та, ZrC, W).

Следует отметить, что при любом способе подогрева катода необходимо обеспечить его работу в режиме ограничения тока пространственным зарядом для получения стабильных параметров электронного пучка. Поэтому с целью исключения влияния возможных случайных колебаний температуры катода на ток пучка рабочую температуру катода выбирают на 5—10%большей, чем это необходимо для получения заданного тока пучка.

На рис. 59 и 60 даны эмиссионная характеристика танталового катода и размеры фокусного пятна пучка в зависимости от времени работы катода. Из этих зависимостей видно, что применение массивного танталового катода обеспечивает стабильные параметры элект-

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.08.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

17:51 Металлорежущие станки плазменной и газовой резки

13:39 Лист 14Х17Н2 размер 3, 4, 10, 16, 20, 25, 40 мм.

13:39 Шестигранник 14Х17Н2 s:27, 32, 36, 46, 55, 65 мм

13:39 Лист сталь 40Х13 размер 2, 3, 6, 10, 14, 20, 30 мм

13:39 Круг 10Х17Н13М2Т ф 30, 40, 50, 60, 70, 250, 500 мм

13:38 Круг 40Х ф 220, 250, 280, 300, 320, 380, 400 мм

13:38 Круг 13ХФА диаметр 30, 40, 50, 60, 70, 80, 90 мм

13:38 Круг 95Х18 размер 5, 6, 7, 8, 9, 10, 20, 90, 120

13:38 Круг 45Х14Н14В2М размер 18, 20, 28, 32, 36, 40, 47

13:38 Круг 4Х5МФС диаметр 30, 40, 50, 60, 70, 80, 90 мм

НОВОСТИ

22 Марта 2017 17:47
Различные виды сварки трением

22 Марта 2017 14:08
Необычные строения из алюминия в Японии (17 фото)

20 Марта 2017 23:31
Станки и оборудование специалисты смогут выбрать на выставке Mashex Siberia

24 Марта 2017 10:38
”БМК” подписал контракт на закупку канатной машины по проекту импортозамещения

24 Марта 2017 09:42
Хабаровский край обеспечен золотом на 34 года

24 Марта 2017 07:53
В ”Кольской ГМК” тестируют новое производство

23 Марта 2017 17:11
Хабаровские машиностроители применяют метод ионного азотирования деталей

23 Марта 2017 16:53
Вьетнамский импорт стали в феврале вырос на 17,6%

НОВЫЕ СТАТЬИ

Основные виды натурального камня

Труба из нержавеющей стали: классификация и область применения

Разновидности труб из коррозионностойкой стали и их применение в бытовых и промышленных условиях

Труба нержавеющая 20Х23Н18 для химпрома

Труба нержавеющая в обеспечении комфортной работы предприятий

Купить металлопрокат в Тамбове

Что лучше: купить квартиру с отделкой или без отделки?

Технологии остекления балконов и цены в Киеве

Гравировка на металле: улучшаем офис для успеха в бизнесе

Кварцевый агломерат и виды искусственного камня

Теплый электрический пол для квартиры

Основные виды запчастей для автомобильного двигателя

Электрические защитные автоматы для квартиры

Распространенные сертификаты в промышленности

Решетчатые и прессованные настилы в промышленности

Использование трубы нержавеющей 12Х18Н10Т в машиностроении и других остраслях

Труба нержавеющая 10Х17Н13М2Т в отраслях промышленности

Труба нержавеющая 06ХН28МДТ в котельной промышленности

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.