Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Электрошлаковая сварка -> Сущность процесса электрошлаковой сварки -> Сущность процесса электрошлаковой сварки

Сущность процесса электрошлаковой сварки

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  7  8  9  10 

талла околошовной зоны при высоких температурах, что неблагоприятно сказывается на механических свойствах металла сварного соединения и, в частности, на ударной вязкости.

Указанное обстоятельство определяет повышенный интерес к изучению тепловых процессов при ЭШС, исследованию которых посвящен целый ряд работ как в нашей стране, так и за рубежом и др.

Значительную группу перечисленных исследований составляют экспериментальные работы, в которых с помощью температурных датчиков (обычно термопар) изучали температурные циклы в различных точках околошовной зоны в зависимости от условий и режима ЭШС. Техника таких измерений не так проста, особенно при получении данных в глубинных слоях металла. Использование для этих целей глубоких сверлений (каналов для термопар) представляет большие трудности. Кроме того, наличие каналов искажает температурное поле.

В этой связи заслуживает внимания весьма оригинальная методика составных симметричных образцов, предложенная Г. 3. Волошкевичем. Образец состоит из четырех одинаковых пластин, собранных, как показано на рис. 1.17, а. Благодаря симметричности температурного поля относительно плоскости разъема оно получается таким же, как в сплошном образце. Проволоки термопар вводят сбоку, через плоскость разъема и приваривают к пластинам конденсаторной сваркой. На рис. 1.17, б приведены результаты измерения подвижного температурного поля при ЭШС стальных пластин толщиной 50 мм для варианта режима сварки: Uc = 42 В, ve = 168 м/ч, de = 3 мм, b = 25 мм, Lc = = 70 мм, S = 50 мм, hs = 35 мм. Эти данные получены путем одновременного съема показаний большого числа термопар, расположенных по осям хиу.

Для квазистационарного температурного поля достаточную информацию можно получить, расположив термопары поперек

сварного шва, т. е. в плоскости х = const. При электрошлаковой сварке квазистационарное состояние наступает спустя довольно значительное время после начала процесса, что связано с малой скоростью сварки.

Для практики существенный интерес представляют следующие вопросы, связанные с нагревом изделия при электрошлаковой сварке: 1) форма и размеры сварочной (металлической) ванны; 2) термические циклы в зоне термического влияния; 3) общее температурное поле, определяющее остаточные сварочные напряжения и деформации. Форма и размеры сварочной ванны определяются подвижным температурным полем, расположенным непосредственно у источника нагрева, где квазистационарное состояние наступает значительно раньше, чем в периферийных зонах, что весьма важно для обеспечения стабильности проплавления и объема металлической ванны по длине шва. В настоящее

время благодаря многочисленным экспериментам собрано большое количество информации о влиянии параметров режима электрошлаковой сварки на основные геометрические характеристики металлической ванны. Построить достаточно общую расчетную схему для оценки размеров металлической ванны при ЭШС весьма трудно. Известны отдельные работы, где такой поиск ведется на основе моделей теории теплопроводности применительно к оценке глубины проплавления. Однако поскольку при этом не учитывается тепломассоперенос в пределах жидкого шлака и металла, то надежность такого подхода в общем невелика. Очевидно, наиболее перспективен эмпирический путь получения зависимостей размеров металлической ванны от параметров режима ЭШС.

Большой круг практических задач связан с оценкой параметров термических циклов в околошовной зоне при ЭШС, в частности, распределения максимальных температур, длительности выдержки металла околошовной зоны при высоких температурах и скорости охлаждения при заданных температурах. Известен целый ряд экспериментальных и расчетных исследований, посвященных этим вопросам.

На рис. 1.18, а приведены кривые, характеризующие распределение температур Т по ширине околошовной зоны, на рис. 1.18,6 — скорость охлаждения w при определенных температурах (указаны индексами) и на рис. 1.18, б—длительности нагрева t — все в зависимости от удельной погонной энергии q/vS.

Получение данных, подобных приведенным на рис. 1.18, достаточно трудоемко, и их использование для практических целей ограничивается фактически областью рассмотренных в эксперименте вариантов режима и условий сварки. Поэтому значи

тельный интерес проявляется к расчетным методам по типу разработанных для других методов сварки (дуговая, электроннолучевая и др.).

Расчетная схема, разработанная для линейного источника теплоты, медленно движущегося в неограниченной пластине (применительно к дуговой сварке), оказалась мало пригодной для электрошлаковой сварки. Она только качественно отражает характер изменения параметров термического цикла. Поэтому были предложены уточненные расчетные схемы, в которых различными способами учитывают распределенность теплового потока при ЭШС. Среди этих схем наиболее простой и удачной является схема трех подвижных линейных источников, согласно которой источник теплоты при ЭШС, сложно распределенный по объему шлаковой и металлической ванны, заменяют совокупностью трех линейных источников, распределенных по высоте ванны следующим образом. Первый самый верхний источник q1 расположен на уровне зеркала шлаковой ванны и равен 0,25 q, где q — полная эффективная мощность нагрева изделия; второй источник q2 расположен на уровне активной зоны в шлаковой ванне и равен 0,5 q; третий источник q3 расположен в средней части металлической ванны и равен 0,25 q. На рис. 1.19 для конкретных случаев электрошлаковой сварки стальных пластин приведены результаты расчета температурных циклов для различных точек околошовной зоны.

В каждом конкретном случае удовлетворительное согласование можно получить некоторым уточнением эффективной мощности q, указанных выше теплофизических параметров и расположением источников ql, q2, q3.

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  7  8  9  10 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2012.04.10   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

16:39 Трос стальной ГОСТ 3064-80 от 100 п.м.

16:37 Канат арматурный ГОСТ 13840-68

07:53 СВА-6 Установка акустическая для поиска мест повреждения кабеля

07:52 ”ГРОЗА-1” Комплекс для диагностики заземляющих устройств

07:51 ИПИ-10-МОЛНИЯ Высоковольтный измеритель параметров изоляции

07:50 ПБНИ-3 Блок низковольтных измерений переносной

07:49 АВ-60-0,1РП СНЧ установка высоковольтная для испытания кабеля

07:35 УПУ-6 Установка испытательная пробойная универсальная

07:33 К540-3 Измеритель параметров силовых трансформаторов

07:31 ГЗЧ-2500 Генератор звуковой частоты для поиска мест повреждения кабеля

НОВОСТИ

22 Октября 2017 17:17
Утилизация высоковольтного кабеля

17 Октября 2017 12:22
Вертикально-подъемный мост Тикуго (28 фото, 1 видео)

23 Октября 2017 17:08
Китайский выпуск рафинированной меди в сентябре вырос на 6,8%

23 Октября 2017 16:08
”ЕВРАЗ ЗСМК” освоил производство арматуры для рынков Польши и Нидерландов

23 Октября 2017 15:39
Японский экспорт стали в сентябре 2017 года упал на 6,7%

23 Октября 2017 14:50
”MidUral Group” объявляет финансовые результаты деятельности за 2016 год по МСФО

23 Октября 2017 13:57
”Селигдар” выступает за открытый рынок аффинажа

НОВЫЕ СТАТЬИ

Виды и особенности пружин

В чем заключается комплексная охрана строительных и промышленных объектов

Упаковка промышленного оборудования и грузов

Радиаторы отопления - особенности и применение

Ограждения из стекла для современных общественных и жилых зданий

Отделочная плитка - особенности и сфера применения

Уравнительные платформы - применение и особенности

Типы и особенности секционных ворот

Какие бывают складские услуги

Какими характеристиками отличаются провода

Дверные замки - какие надежнее?

Конструкции и рекомендации по выбору погрузочных эстакад

Душевые уголки: вид, форма и конструкция

Особенности выбора окон и их отличия

Хрустальные торшеры – роскошь, ставшая доступной

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "Русский металл" предлагает изготовление металлоконструкций.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.