Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Сварка, резка и пайка металлов -> Диффузионная сварка в вакууме -> Часть 15

Диффузионная сварка в вакууме (Часть 15)

только в текущем разделе

Страницы:    1  2  3  4  5  ...  14  15  16  17  18  ...  57  58  59  60  61   

ный клапан 8 пароструйным диффузионным насосом 2, снабженным маслоотражателем 2. Электромагнитные клапаны 3 и 8 выполнены в едином корпусе. Выпускной патрубок диффузионного насоса 1 через электромагнитный клапан аварийного закрытия 9 соединен с одной из камер многокамерного механического вакуумного насоса 7. Основным назначением электромагнитного клапана 9 является предотвращение попадания атмосферы и масла в насос 1 из насоса 7 при аварийном обесточивании системы.

В вакуумной системе, выполненной по схеме на рис. 33, а, откачка камеры ведется в три этапа: в начале технологического цикла производится предварительная откачка механическим вакуумным насосом 3, затем осуществляется предварительная откачка многокамерным механическим насосом 2, и наконец, изделия проходят обработку при откачке пароструйными диффузионными насосами 1. В этой схеме золотник 4 расположен между откачным гнездом и пароструйным диффузионным насосом и для надежной работы золотника его вакуумные каналы защищены кольцевыми проточками, заполняемыми маслом, которое откачивается механическими вакуумными насосами. Вакуумные системы с таким расположением золотника даже при тщательном изготовлении всех элементов обеспечивают давление в системе не ниже 1 • 10~3 мм рт. ст. вследствие большой протяженности высоковакуумных коммуникаций и негерметичности золотника.

В вакуумной системе, выполненной по схеме на рис. 33,6, золотник 4 расположен в области предварительного разрежения, вследствие чего в системе можно обеспечить лучшее разрежение, чем в предыдущем случае. Пароструйные насосы 1 периодически охлаждаются перед выгрузкой и постановкой нового изделия.

Предварительная откачка камеры и насоса 1 производится отдельным механическим вакуумным насосом 3. Дальнейшая откачка пароструйных насосов осуществляется многокамерным насосом 2. Вакуумные системы, построенные по схеме на рис. 33,6,

применяются в карусельных машинах откачки с длительным технологическим циклом, продолжительность которого достаточна для охлаждения пароструйного диффузионного насоса на одной-двух позициях.

Приведенные принципиальные вакуумные схемы естественно не исчерпывают всех возможных вариантов построения вакуумных систем карусельных сварочных установок и конвейерных линий.

ОСНОВНЫЕ ИСТОЧНИКИ НАГРЕВА

При исследовании диффузионной сварки в вакууме металлических и неметаллических материалов в широком диапазоне температур нагрев образцов и деталей до заданных температур осуществляется различными методами, которые могут быть разделены на две группы. К первой группе относятся способы, при которых нагрев производится внешними источниками тепла, передающими тепловую энергию образцу, например за счет радиации или теплопроводности. Вторую группу составляют такие способы нагрева, при которых тепло возникает непосредственно в самих образцах как результат преобразования электрической энергии в тепловую.

Радиационный нагрев. Радиационный нагрев свариваемых деталей может осуществляться за счет излучения от нагревателя, помещенного снаружи или внутри корпуса вакуумной камеры. Предельное значение температуры нагрева деталей определяется термостойкостью корпуса вакуумной камеры.

Принципиальные схемы нагрева образцов и деталей в вакууме за счет радиации и теплопроводности показаны на рис. 34. Радиационный нагрев детали 1, укрепленной на державке 2 и находящейся в вакуумной камере 3 (рис. 34,а и б), происходит за счет излучения от нагревателя 4, расположенного снаружи (рис. 34, а) или внутри (рис. 34,6) вакуумной камеры. При выполнении камеры, например из плавленого кварца или другого материала, максимальная температура нагрева ограничена температурой размягчения материала, образования пористости, приводящей к нарушению герметичности и выходу вакуумной камеры из строя. Как показала практика, например, при сварке нагревателей из дисилицида молибдена при толщине стенок кварцевой трубы 2,5 мм и диаметре 25 мм скорость повышения температуры составляет 40—50 град/мин. При сварке нагревателей при температуре 1200° С затрачивается примерно 20— 30 мин.

Увеличение или уменьшение скорости нагрева может изменяться за счет напряжения, подводимого к нагревателю. Практически, как правило, нагреватель 4 размещается непосредственно в вакуумной камере (рис. 34,6), детали могут нагреваться до температуры 2500—3000° С. Для получения столь высоких температур нагреватели изготовляются из вольфрама или графита. При нагреве до более низких температур 1360—2360° С применяются молибден и титан, а при нагреве до 1000° С успешно применяются нагреватели из сплава типа нихром. При использовании указанных выше нагревателей следует учитывать, что материал нагревателя в вакууме испаряется и осаждается на поверхности деталей, что в ряде случаев недопустимо.

При схеме, приведенной на рис. 34, в, образец 1 нагревается в вакуумной камере 2 от нагревателя 3. Во избежание приваривания или оплавления детали вследствие непосредственного контакта нагревателя с деталью применяют термоизоляцию 4 нагревателя путем нанесения, например, тонкого слоя окиси алюминия.

На рис. 34, г представлена схема, иллюстрирующая расположение свариваемой детали 1 в вакуумной камере 2 при нагреве электрической печью 3, расположенной снаружи камеры. При таком способе нагрева преобладает передача тепла за счет теплопроводности, но значительное влияние оказывает также и радиация с поверхности нагретого корпуса.

Количество тепловой энергии q, передаваемой образцу за счет излучения с поверхности нагревателя, как известно, пропорционально разности четвертых степеней температур нагревателя ТН и образца То (в абсолютных градусах). Закономерность установленная Стефаном и Больцманом, выражается зависимостью

где Кп — коэффициент излучения, зависящий от физических свойств материала образца и от состояния его поверхности. Для абсолютно черного тела Кп = 1- Для полированной поверхности молибденового нагревателя Кп Щ 0,2. Для стали, имеющей окисленную поверхность Кп ~ 0,8, а для полированной стальной поверхности Кп « 0,3.

Разность температур нагревателя и образца увеличивается по мере повышения скорости нарастания температуры нагревателя и определяется условиями передачи тепловой энергии. Эта разность температур возрастает по мере увеличения расстояния между нагревателем и образцами, а также при наличии между ними экранов и барьеров.

Скорость повышения температуры при нагреве внешними источниками тепла (при неизменной мощности, расходуемой нагре-

Страницы:    1  2  3  4  5  ...  14  15  16  17  18  ...  57  58  59  60  61   

Последние обсуждаемые темы

Самые обсуждаемые темы за все время

 Тема

Идеальный сварочный стол

Чем варить новичку?

Новейшие разработки Fronius в области роботизированных сварочных систем

горелка для роботизированной сварки с механизмом Push-Pull

Fronius представляет WeldCube — новую систему документирования и анализа данных

Отработка технологии сварки элементов мостовых конструкций

Специальное предложение до 31 декабря 2015

Сварочные решения для автомобилестроения

Новый стандарт производительности наплавки

Какие электроды нужны для сварки?

 Тема

Сообщений 

Какие электроды нужны для сварки?

8

Для резки металлолома лучше газорезка или ручная дуговая?

7

Идеальный сварочный стол

3

Кто пользовался электролизерными установками?

2

Магнитное дутье

2

Конденсаторная сварка

1

Орбитальная сварка

1

Cнятие остаточных напряжений в сварных швах

1

Галерея качественных изделий

1

Сварочный аппарат для дома на 220

1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Газовая сварка
Газовая резка
Полуавтоматическая дуговая сварка (MIG/MAG)
Ручная дуговая сварка (MMA)
Аргонно-дуговая сварка (TIG)
Контактная сварка
Пайка
Наплавка
Электрошлаковая сварка
Сварка стали
Сварка чугуна
Сварка алюминия
Сварка меди
Сварка латуни и бронзы
Сварка титана
Сварка никеля
Сварка магния
Сварка цинка
Сварка конструкций
Сварка труб
Виды сварки металлов
Техника безопасности при сварке
Диффузионная сварка в вакууме
Электронно-лучевая сварка
Газопламенная обработка материалов
Сварка свинца
• Особенности сварки химического оборудования
• Сварка драгметаллов - золота, серебра и т.д.

НОВЫЕ ОБЪЯВЛЕНИЯ

Ч 15:48 Труба 219х8 09Г2С ГОСТ 10704

Ц 15:47 Полоса бронзовая БрАЖН 10-4-4 ГОСТ 18175-78.

Ц 15:47 Полоса бронзовая 125x185x480 БрАЖМц10-3-2 ГОСТ 18175-78.

Ц 15:47 Полоса бронзовая БрАЖ9-4 ГОСТ 18175-78.

Ц 15:47 Полоса нихромовая Х20Н80 ГОСТ 12766.5-90.

Ц 15:47 Свинец С1, С2

Ц 15:47 лом титана кусок и стружка

Ц 15:47 Монель, константан, копель алюмель, хромель.

Ч 15:47 Фланцы нержавеющие разных типов. Всегда в складе.

Ч 15:47 Трубы нержавеющие разных диаметров AISI 304 и 316.

Ч 15:45 Краны нержавеющие раных типов присоединения.

Т 15:45 Трубы 325 х 6, 8, 9 мм стальные

НОВОСТИ

20 Января 2017 17:12
Трубогибы с индукционным нагревом

21 Января 2017 17:37
Выпуск стали на американских Великих озерах за неделю вырос на 0,7%

21 Января 2017 16:14
”РУСАЛ” рассматривает возможность продажи двух свердловских предприятий

21 Января 2017 15:10
Стоимость бразильского экспорта железной руды в декабре 2016 года выросла на 39%

21 Января 2017 14:23
”Группа ГМС” изготовила модульные компрессорные установки для Иркутской нефтяной компании

21 Января 2017 13:41
Заказчики пошли на мировую с ”ЧТЗ”

НОВЫЕ СТАТЬИ

Востребованные быстровозводимые и каркасные металлоконструкции

Классификация современной строительной арматуры

Шнек для цемента от компании ТензоТехСервис

Современные микросхемы - основные виды

Мелкие крепежи для электромонтажных, сантехнических и строительных работ

Латунная труба и прокат в промышленности

Муфта и ниппель по ДТР

3 способа обустройства выносных балконов

Стабилизаторы напряжения и их особенности

Промышленное холодильное оборудование

Вентиляторные градирни и комплектующие для них

Электрические шкафы и комплектующие для них

Никелевая лента 79НМ

Разработка плана ликвидации аварий

Легкие каркасные металлоконструкции

Современные системы кондиционирования

Комплектующие и фурнитура для мебели

Обои для жилых и общественных помещений

Завод по производству металлоконструкций

Особенности и выбор рольставен

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.