Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Плавка и розлив металлов -> Основы процессов термической обработки -> Основы процессов термической обработки

Основы процессов термической обработки

Оглавление статьи Страницы статьи:  1  2  3  ...  5  6  7  ...  23  24  25  ...  45  46  47 

Чтобы избежать дорогостоящего измерения теплопроводности, была предпринята попытка определить теплопроводность на основе закона Видермана—Франца—Лоренца, измерив электропроводность при соответствующих температурах. Эга попытка основывалась на том, что дефекты решетки влияют одинаково как на электропроводность, так и на теплопроводность. Используя уравнения (1.24) и (1.25), можно получить модифицированную форму закона Видермана—Франца—Лоренца, Вт/(м-К):

I = L нT + b, (1.32)

где L — коэффициент, близкий к коэффициенту Лоренца, независящий от температуры; b — константа, независящая от температуры; н — удельная электропроводность, 1/(Ом.см).

В своем первоначальном виде закон Видермана—Франца— Лоренца не годится для определения теплопроводности, поскольку величина коэффициента Лоренца для различных металлов различна и для каждого металла характеризуется различной температурной зависимостью. Экспериментальные исследования показали, что коэффициенты L и b почти равны друг другу в тех сплавах, в основе которых лежит один и тот же металл. Поэтому оказывается возможным с помощью приведенных в табл. 1.2 значений для сплавов на основе различных металлов определить температурную зависимость теплопроводности по данным измерения электропроводности.

При этом наряду с составом и температурой учитывается также структурное состояние после конкретной обработки.

г. Измерение теплопроводности

Теплопроводность измеряется только в тех случаях, когда описанные выше методы не позволяют решить поставленную задачу или при необходимости получить более точные результаты. Для

этой цели, согласно уравнению (1.8), необходимо измерять проходящее за единицу времени через единицу поверхности материала количество тепла. Поток этого тепла вызывается градиентом температуры, который также необходимо определить. Поскольку при этом должны быть одновременно определены все неизбежно возникающие потери тепла, затраты на проведение описанных экспериментов весьма велики. Далее, необходимо при измерении количества тепла определить время, в течение которого градиент температуры, обусловливающий тепловой поток, не должен изменяться. Это означает, что должно быть установлено стационарное состояние. Поэтому измерения теплопроводности в зависимости от температуры измерения сопряжены со значительной трудоемкостью. В связи с этим измерения абсолютных величин теплопроводности для решения технологических вопросов термической обработки должны производиться только в исключительных случаях. Как правило, относительные измерения позволяют получать достаточно точные значения коэффициентов теплопроводности. При этом теплопроводность определяется с помощью эталонного образца с известной теплопроводностью.

1.1.5. Температуропроводность в твердых телах

Данные о скорости изменения температуры нестационарного температурного поля в теле как следствие теплового потока могут быть получены с помощью уравнения температуропроводности (1.10). В то время как тепловой поток в теплоносителе пропорционален градиенту температуры, температурное поле изменяется во времени тем больше, чем больше кривизна кривой температура — координаты точек в теле. Кроме того, временные изменения температуры тем больше, чем больше коэффициент температуропроводности рассматриваемого материала. В упрощенной форме эти отношения показаны на рис. 1.11 на примере большой пластины толщиной D = х2 — х1 в которой тепловой поток проходит перпендикулярно к поверхности пластины.

Изменения температуры внутри пластины вызываются тепловым потоком, который продолжает двигаться через поверхность пластины наружу (теплообмен с окружающей средой). Только для случая j(x1) = j (х2) (температурная кривая 1) градиент температуры сохраняется постоянным

по всей пластине. Поскольку количество подводимого и отводимого тепла одинаково велико, то вследствие того, что д2Т/дх2 = 0, устанавливается стационарное состояние. Этому предшествует, как правило, нестационарное состояние, при котором приток тепла больше, чем его отвод, и наоборот. При этом температура в пластине со временем вследствие того, что д2Т/дх2 > < 0, должна увеличиваться или уменьшаться (температурные кривые 2 и 3). Этот случай соответствует процессу нагрева или охлаждения, причем температуры на поверхностях пластины Т (x1) и Т (х2) оцениваются с учетом коэффициента теплопередачи и зависят от теплообмена между телом и окружающей его средой. Поскольку при нестационарных условиях кривые температура—место (правильнее температура — координаты точек в теле) со временем «выглаживаются» (приближение к стационарному состоянию), каждое данное распределение температуры может быть соответствующим образом определено. При этом можно установить, в каком месте в следующий момент времени увеличится или уменьшится температура. Скорость изменения температуры зависит, кроме того, от свойств материала тела, которые учитываются коэффициентом температуропроводности, в частности от его химического состава.

1.1.5.1. Температуропроводность сталей

Коэффициент температуропроводности представляет собой отношение переданного количества тепла к количеству тепла, необходимому для нагрева теплоносителя, или к количеству тепла, выделившемуся при его охлаждении. При изменении с температурой свойств конкретного материала, его реальной структуры этот коэффициент изменяется не так, как коэффициент теплопроводности того же материала. Кроме того, необходимо учитывать, что наряду с изменением теплопроводности и реальной структуры при изменении температуры изменяется также плотность и теплоемкость материала. Теплоемкость стали мало зависит от содержания в ней (в обычных пределах для промышленных сталей) легирующих элементов и ее структурного состояния после конкретной обработки. Коэффициент температуропроводности стали главным образом определяется влиянием дефектов решетки на коэффициент теплопроводности. Температуропроводность стали с ферритной структурой изменяете с изменением температурь.

иначе, чем теплопроводность. Это объясняется тем, что теплоемкость вблизи температуры Кюри возрастает до очень больших значений, в результате чего температуропроводность этих сталей ухудшается в окрестности температуры Кюри. Из рис. 1.12 видно, что температуропроводность так же, как теплопроводность, с увеличением содержания легирующих элементов ухудшается. При высоком содержании легирующих элементов влияние температуры на температуропроводность становится меньше. Поэтому температуропроводность высоколегированных сталей с повышением температуры изменяется только в небольшой степени. В связи со специфическим характером температурной зависимости теплопроводности аустенитных сталей их температуропроводность может даже несколько возрастать. Изменение температурного коэффициента температуропроводности обычных сталей, имеющих до нагрева структуру ферритной матрицы, определяется как собственно а—y-превращением, так и тепловым эффектом при температуре Кюри. Выше 900° С коэффициенты температуропроводности всех сталей только немного отличаются от значения 0,04-10-4 м2/с.

1.1.5.2. Методы определения температуропроводности сталей

При определении температуропроводности сталей также справедливо высказанное выше основное правило: требования к точности измерения обусловливают выбор метода определения температуропроводности. Из-за высокой стоимости нецелесообразно проводить измерения температуропроводности для создания конкретной технологии термообработки данной детали, а в этих случаях следует пользоваться имеющимися литературными данными.

а. Литературные данные

Коэффициенты температуропроводности многих сталей с учетом влияния температуры и состава приведены в таблицах Гольдшмита, а также Ландольта—Бернштейна и Рихтера.

б. Расчет температуропроводности

Температуропроводность материалов может быть рассчитана на основании данных о теплопроводности, согласно уравнению (1.11). Если плотность и удельная теплоемкость материала при данной температуре известны, можно оценить также влияние на температуропроводность состояния материала. Это возможно при условии определения теплопроводности методами, описанными в разделе 1.4.3. При этом изменение теплоемкости материала (в отличие от изменения теплопроводности) при определенной температуре в зависимости от реальной структуры невелико. Изменения удельной теплоемкости стали с температурой приведены в табл. 1.3.

Оглавление статьи Страницы статьи:  1  2  3  ...  5  6  7  ...  23  24  25  ...  45  46  47 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2010.11.14   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

11:03 Круг стальной 6мм-550мм ст.Х12МФ ГОСТ 5950-2000

11:03 Круг сальной диаметр 50-600мм ст40ХН2МА ГОСТ 4543

11:03 Круг г/к сталь 30ХМА ГОСТ 4345-71 диаметр 12-280мм

11:03 Лист ст.20 хк, Лист 0.5-3мм хк ст.20 ГОСТ 19904

11:03 Лист хк 0.5-3мм 65Г; Сталь 65Г лист х/к 0.5мм-3мм

11:02 Полоса стальная ст.Х12МФ 10-100мм ГОСТ 5950-2000

11:02 Труба бесшовная 12-50мм ст.12Х18Н10Т ГОСТ 9941-81

11:02 Круг сталь 95Х18 5-320мм ГОСТ 5949-75;Круг 95Х18

11:02 Круг ст.40Х13 10мм-600мм ГОСТ 5632-75

11:02 Труба сталь 10Х17Н13М2Т 12-426мм ГОСТ9941 ГОСТ5632

НОВОСТИ

17 Октября 2017 12:22
Вертикально-подъемный мост Тикуго (28 фото, 1 видео)

16 Октября 2017 17:05
Работа шаропрокатного стана

17 Октября 2017 11:34
”Томинский ГОК” заложил фундамент обогатительной фабрики

17 Октября 2017 10:19
Производственные результаты ”ЕВРАЗа” за 3-й квартал 2017 года

17 Октября 2017 09:29
”Прииск Соловьевский” за 9 месяцев добыл более 2,6 тонн золота

17 Октября 2017 08:59
Новый кабель производства АО ”Сибкабель” прошел опытную эксплуатацию на угольном разрезе

17 Октября 2017 07:59
”Ижорские заводы” отгрузили реактор гидроочистки для ООО ”КИНЕФ”

НОВЫЕ СТАТЬИ

Какие бывают опоры для трубопроводов

Типовые системы капельного орошения в сельском хозяйстве

Лампы накаливания - выбор, проверенный годами

Виды и применение в строительстве сортового проката

Ювелирные изделия - пробы и лигатуры

Промышленные ворота - виды, особенности, назначение

Оснастка для фрезерных станков

Почта России отслеживание почтовых отправлений по идентификатору

Открытая планировка квартир и ее особенности

Причины популярности каркасных домов

Вилочные погрузчики для складов и предприятий

Элетрооборудование и промышленные приводы для асинхронных электрических машин

Рециклинг асфальта - обзор от производителя

Особенности строительства каркасных домов

Конвейеры для промышленных производств

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "Русский металл" предлагает изготовление металлоконструкций.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.