Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Обработка металлов -> Термообработка -> Микропластические деформации при термообработке -> Микропластические деформации при термообработке

Микропластические деформации при термообработке

Оглавление статьи Страницы статьи:  1  2  3  ...  9  10  11  ...  17  18  19 

В общем случае размерную стабильность металлических материалов следует характеризовать показателями сопротивления микропластическим деформациям при длительном нагружении - критериями релаксации напряжений или микроползучести.

Физическая природа процессов ползучести и релаксации напряжений общая. Однако характеризовать размерную стабильность металлов критериями релаксации напряжений предпочтительнее, поскольку испытания при уменьшающихся во времени напряжениях в большей степени соответствуют условиям поведения материала в реальных изделиях.

Количественной характеристикой размерной стабильности может служить максимальная величина напряжения, не релаксирующая в условиях испытаний (с учетом погрешности метода). Как известно, кривая релаксации напряжений характеризуется наличием двух участков - интенсивной релаксации в начальный период испытаний с последующей замедленной скоростью процесса во второй стадии. Соответственно релаксационную стойкость следует характеризовать величиной максимального напряжения, релаксирующего не выше допустимого предела (по величине остаточной деформации), раздельно по первому и второму периоду испытаний. Как показали результаты испытаний широкого круга конструкционных металлов и сплавов при температурах порядка 20-150° С, период ускоренной релаксации обычно не превышает 500 ч. Максимальное напряжение о1, релаксирующего при этом до уровня, не выше заданного (последний, как правило, определяется разрешающей способностью метода), при температурах порядка 100-150° С и ниже обычно коррелирует с прецизионным пределом упругости. Как следует из изложенного выше этот показатель не является исчерпывающей характеристикой размерной стабильности материала и может свидетельствовать о способности сохранения постоянства размеров на период изготовления, сборки и регулировки изделий, который в производственных условиях обычно составляет несколько сот часов.

Наиболее полной характеристикой размерной стабильности материала во времени является величина максимального напряжения, не релаксирующего во втором периоде испытаний (500-3500 ч), которую называют условным пределом релаксации. Особенно велика роль этого показателя для цветных сплавов, где при 100- 150° С под воздействием температуры и напряжения активизируются диффузионные процессы. Эту величину и следует использовать в качестве основной характеристики размерной стабильности сплавов в прецизионном приборостроении и машиностроении.

2. МЕТОДЫ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК РАЗМЕРНОЙ СТАБИЛЬНОСТИ МЕТАЛЛОВ И СПЛАВОВ

Прецизионный предел упругости и сопротивление микротекучести определяют методом последовательного нагружения с фиксацией остаточной деформации после разгрузки образца. В первоначальных исследованиях нагружение производили вручную гирями.

В последнее время для этой цели обычно используют испытательные машины «Instron», оборудованные гидравлической системой нагружения с точностью ±0,1%. Для обеспечения точного центрирования образца относительно оси нагружения применяют захваты, снабженные шаровыми опорами (рис. 4). Для измерения остаточной деформации 1 • 10-6 используют проволочные, фольговые и емкостные датчики, оптические интерферометры. При этом принимают специальные меры по виброизоляции испытательных средств и стабилизации температуры в пределах ±0,1°. Необходимость последнего очевидна, поскольку коэффициент термического расширения конструкционных металлов и сплавов более 5.10-6 1/град. Особое внимание уделяют вопросам выбора клея и технологии приклеивания датчиков к образцам с целью предотвращения ползучести клеевой прослойки. При помощи емкостных тензометров получены результаты

исследования остаточных деформаций 5.10-8. Нагружение производили посредством строго контролируемого гидростатического давления внутри испытательной камеры при температурной стабилизации условий эксперимента в пределах ±0,005°.

В наших исследованиях предел упругости при растяжении определяли на цилиндрических образцах №18к D 5 мм по ГОСТ 1497-73. Остаточную деформацию измеряли посредством проволочных тензодатчиков на бумажной основе. В качестве измерительного устройства использовали автоматический электронный моcт c восстановлением баланса с помощью асинхронного электродвигателя, включенного через усилитель в измерительную диагональ и связанного с подвижным реохордом и стрелками- указателями шкалы. С целью повышения надежности контроль деформации производили одновременно по двум тензодатчикам с базой 10 мм, которые наклеивали на среднюю часть образца по обе стороны от осевой линии. Самоцентрирование образца в процессе нагружения достигалось использованием шаровых опор, показанных на рис. 4. Для компенсации температурной деформации в соответствующие плечи моста включали датчики, аналогичным образом наклеенные на ненагруженный образец. Фиксировали остаточную деформацию величиной 1.10-5 однако в целях повышения точности метода предела упругости измеряли при величине остаточной деформации 0,002- 0,005%.

Трудности определения предела упругости при растяжении при остаточных деформациях порядка 10-6 и менее прежде всего связаны с необходимостью стабилизации температурных и других условий эксперимента. Поэтому в нашей стране получили распространение методы испытаний при изгибе. При этом для определения предела упругости при остаточных деформациях 10-6-10-7 требуется измерять остаточный прогиб с чувствительностью порядка 0,001 мм, что легче осуществить практически.

Наиболее приемлемыми для практического использования являются метод продольного изгиба тонких пластин (толщиной 0,5 мм) А. Г. Рахштадта и М. А. Штремеля и разработанный А. Г. Рахштадтом с сотрудниками метод чистого изгиба для образцов толщиной 0,5 и 2 мм. В наших исследованиях эти методы использовались в варианте, усовершенствованном В. Д. Пискаревым. Им разработана конструкция измерительного узла с использованием электроконтактной головки, обеспечивающая устойчивый сигнал при перемещении измерительного наконечника на 0,00003 мм при практически полном устранении измерительного усилия. На рис. 5 показаны узлы нагружения (а), измерения остаточного прогиба (б) и электрическая схема контактной головки (в) прибора конструкции В. Д. Пискарева. Измерение остаточного прогиба величиной 0,006 мм соответствует разрешающей способности по остаточной деформации 5.10-7 что на 1,5-2 порядка выше, чем в ранее известных конструкциях с оптической системой измерения. Надежность и высокая производительность этого прибора позволили внедрить его для массовых испытаний, в том числе для контроля качества термической обработки в производственных условиях. При использовании электроконтактной головки для измерения предела упругости при чистом изгибе образцов (рис. 6) с консольной схемой нагружения разрешающая способность по остаточной деформации составляет 6.10-8.

Важное значение имеет выявление корреляции между данными, полученными различными методами. С этой целью проведено экспериментальное сопоставление величин пределов упругости, полученных испытаниями при продольном изгибе образцов размером 0,5 X 10 х 100 мм, при чистом изгибе на образцах сечением рабочей части 2 X 10 мм, а также на кольцевых образцах равного сопротивления изгибу с максимальным сечением 5x5 мм.

Оглавление статьи Страницы статьи:  1  2  3  ...  9  10  11  ...  17  18  19 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2012.05.03   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

17:09 Пресс-форма от произвoдитeля

16:56 Пресс-формы для литья деталей

14:42 Серебрянка, быстрорез р18.

14:33 Дизель генератор АД 30,

14:32 Дизельные электростанции АД 315

14:32 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

12:49 Запчасти для станков, оснастка и узлы в сборе к 1К62, 16К20,

12:13 Продаем трубу б/у нкт 73

11:09 Дизель генератор АД 200, ДЭУ 200, ДГУ 200

09:39 В наличии переключатель кулачковый ПКУ-3 ПКУ3 ПК16

НОВОСТИ

17 Апреля 2017 14:37
Судоподъемник Фолкеркское колесо (16 фото, 1 видео)

24 Апреля 2017 17:54
Китайский выпуск шовных труб в 1-м квартале вырос на 5,6%

24 Апреля 2017 16:50
Производственные результаты ПАО ”Полюс за 1-й квартал 2017 года

24 Апреля 2017 15:09
Мировой выпуск алюминия в марте вырос на 3%

24 Апреля 2017 14:27
”Энергомашспецсталь” отгрузила в Италию детали для прессового оборудования

24 Апреля 2017 13:28
Индийский выпуск готового проката в 2017 году вырастет на 5,7%

НОВЫЕ СТАТЬИ

Видеорегистраторы - основные характеристики

Датчики уровня сыпучих материалов

Лазерные уровни в строительстве

Насосы для колодцев и их основные характеристики

Комплектующие для обустройства железнодорожных путей

Особенности сдачи металлолома в пункты приема

Как открыть свой магазин быстро и оснастить его всем необходимым?

А вы знаете, для чего используют транспортерные сетки?

Какие заборы сегодня наиболее эффективно могут защитить объекты транспортной инфраструктуры?

Про упаковку из воздушно-пузырьковой пленки

Услуги металлообработки от компании Металворк

Экструдеры для производства пластмассовых изделий

Кран шаровый муфтовый фланцевый – универсальная запорная арматура

Применение различных типов редукторов в проектировании механизмов и машин

Столы и верстаки металлические

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.