Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Обработка металлов -> Термообработка -> Микропластические деформации при термообработке -> Часть 9

Микропластические деформации при термообработке (Часть 9)

только в текущем разделе

Страницы:    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19   

В результате релаксации напряжений возрастает сопротивление материала микропластическим деформациям при кратковременном и длительном нагружении. Как видно из рис. 34, после отжига при 350° С предел упругости стали возрастает более чем в 1,5 раза, релаксационная стойкость - почти в 7 раз. При этом возрастание сопротивления микропластическим деформациям наблюдается только при совпадении направления нагружения в условиях предварительной релаксации и последующих испытаний.

 В противном случае характеристики сопротивления микропластическим деформациям становятся ниже исходных (рис. 34, а). Возникающая в результате предварительной релаксации напряжений анизотропия сопротивления микропластическим деформациям является следствием проявления известного эффекта Баушингера.

Наблюдаемые явления свидетельствуют об образовании в процессе релаксации напряжений относительно стабильной ориентированной тонкой структуры - «текстуры дислокаций». Очевидно, что для выяснения характера этой структуры и механизма элементарных процессов при ее образовании необходимы новые исследования.

На основании результатов исследований и литературных данных механизм возникновения и развития микропластической деформации в условиях релаксации напряжений в металлах при комнатной и несколько выше комнатной температурах можно представить в следующем виде.

Непосредственно после приложения внешней нагрузки развивается микропластическая деформация за счет перемещения слабозакрепленных дислокаций (при слабой блокировке) или за счет генерирования новых дислокаций (при сильной блокировке) в местах концентрации напряжений (вблизи границ зерен или других поверхностей раздела).

Непосредственно после нагружения в результате взаимодействия перемещающихся дислокаций между собой или с имеющимися в металле дислокационными сетками в материале наблюдаются структурные изменения. В приграничных участках отдельных зерен, благоприятно расположенных по отношению к действующему усилию, образуется дислокационная структура с наличием порогов, слабозакрепленных дислокаций, неправильных сеток, отдельных дислокационных скоплений.

В процессе релаксации напряжений за счет термических активаций наряду с процессами дальнейшего генерирования и перемещения новых дислокаций проходят процессы отдыха металла с образованием более стабильной дислокационной структуры: легкоподвижные дислокации занимают энергетически более выгодные положения; пороги и дислокации противоположных знаков аннигилируют; примеси и точечные дефекты диффундируют к поверхностям раздела (границам зерен, фрагментов или полос скольжения) или к дислокациям. При релаксации напряжений проходят процессы фрагментации с образованием устойчивых дислокационных границ и равновесной структуры. По-видимому, процессы перераспределения дислокаций и точечных дефектов при релаксации напряжений имеют определяющее значение. Скорость указанных процессов непрерывно уменьшается во времени. По-видимому, в начальном (первом) и последующем (втором) периодах релаксации напряжений проходят одни и те же элементарные физические процессы. Различие между этими периодами состоит только в скоростях нарастания остаточной микродеформации, обусловленной главным образом термически активируемыми процессами перераспределения дислокаций.

СТАБИЛИЗАЦИЯ РАЗМЕРОВ СПЛАВОВ И ИЗДЕЛИЙ ПОСРЕДСТВОМ ВОЗДЕЙСТВИЯ ТЕПЛОСМЕН

Со второй половины 50-х годов с целью понижения внутренних напряжений в изделиях из алюминиевых и магниевых сплавов за рубежом начали применять обработку, режимы которой примерно соответствуют следующей схеме:

1-я операция-охлаждение до -75--95° С, по-видимому, в зависимости от возможностей источника низких температур;

2-я операция - нагрев до комнатной температуры или температуры отжига (старения).

Цикл обработки, состоящей из этих двух операций, повторяется от одного до пяти раз. Однако данные по режимам и эффективности указанной обработки противоречивы.

В литературе влияние теплосмен на металлы и сплавы освещается почти исключительно в связи с их формоизменением и термической усталостью. При этом поведение металлов при теплосменах рассматривается на основе экспериментальных данных, полученных при воздействии большого количества (сотен, во многих случаях - тысяч) термических циклов. В этих условиях процесс необратимого формоизменения проявляется как повторяющийся при каждом новом термическом цикле, т. е. не стремящийся к насыщению.

Наиболее распространенной в настоящее время является разработанная В. А. Лихачевым релаксационная концепция явления, в соответствии с которой для возможности неограниченного нарастания деформации при теплосменах необходимо наличие температурных макро напряжений (т. е. градиента температур по сечению тела), фазовых превращений или анизотропии параметров, характеризующих структуру материала (например, разница в величинах коэффициентов линейного расширения различных фаз, анизотропия теплового расширения и т. п.).

А. А. Бочвар показал, что остаточная деформация при циклической термической обработке (ЦТО) металлов с кубической решеткой связана главным образом с термическими напряжениями и потому для этих материалов решающую роль играет скорость изменения температуры, особенно при охлаждении. В металлах некубических систем, помимо термических напряжений первого рода, существенную роль играют микронапряжения, вызванные кристаллографической анизотропией. Аналогичная картина наблюдается при наличии фазовых превращений, а также в гетерогенных сплавах, где значительный вклад в результирующее изменение размеров при ЦТО вносят микронапряжения, связанные с различием коэффициентов линейного расширения отдельных фаз. По этой причине влияние скорости охлаждения в двух последних случаях не является определяющим формоизменениефактором. Вторым необходимым условием для получения остаточной деформации при ЦТО, по мнению А. А. Бочвара, является высокая верхняя температура цикла (не менее 0,3- 0,5 абсолютной температуры плавления), необходимая для обеспечения разупрочнения при нагреве вследствие процессов возврата и рекристаллизации. Тем самым обеспечивается снятие внутренних напряжений и повторяемость явлений при последующем охлаждении. Так, в опытах А. А. Бочвара не было получено эффекта при ЦТО железа, меди и алюминия, когда верхняя температура цикла была ниже соответственно 500, 300 и 200° С. Поэтому опыты по исследованию влияния ЦТО на размеры, структуру и свойства металлов с кубической решеткой производились главным образом при нагреве выше температуры рекристаллизации в условиях наличия фазовых превращений. Немногочисленные исследования ЦТО в области низких температур выполнены лишь на гексагональных металлах, характеризующихся, как известно, анизотропией теплового расширения.

При ЦТО наблюдалось изменение структуры и размеров зерен, а также миграция их границ. Показано разупрочнение материала при циклическом тепловом воздействии, являющееся следствием накопления повреждений типа пор, микротрещин, что может приводить к трещинообразованию и разрушению (термическая усталость). Отмечено, что при ЦТО уменьшается сопротивление ползучести и длительная прочность.

Страницы:    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19   

Последние обсуждаемые темы

Самые обсуждаемые темы за все время

 Тема

сталь для саморезов

Помогите с тем. обработкай

Помогите выбрать ТВЧ установку.

Виды огнеупоров в металлургии

Термообработка стали

ТО пружины из стали 60

Цементация в гараже

Защита стали от окисления (окалины) и обезуглероживания при термообработке.

С ДНЁМ МЕТАЛЛУРГА!!!

Изотермическая закалка на бейнит

 Тема

Сообщений 

Частые вопросы и ответы по термообработке

42

Термообработка стали

9

Защита стали от окисления (окалины) и обезуглероживания при термообработке.

7

Химико-термическая обработка стали

5

Виды огнеупоров в металлургии

3

Как закалять и отпускать дюралюминий?

3

Цементация в гараже

2

Закалка бронзы

1

Помогите выбрать ТВЧ установку.

1

Сверхбыстрая закалка

1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Основы термической обработки стали
• Химико-термическая обработка стали
Микропластические деформации при термообработке
Термообработка в кипящем слое
• Поверхностная газопламенная закалка
• Термообработка цинковых сплавов

НОВЫЕ ОБЪЯВЛЕНИЯ

Ч 15:48 Труба 219х8 09Г2С ГОСТ 10704

Ц 15:47 Полоса бронзовая БрАЖН 10-4-4 ГОСТ 18175-78.

Ц 15:47 Полоса бронзовая 125x185x480 БрАЖМц10-3-2 ГОСТ 18175-78.

Ц 15:47 Полоса бронзовая БрАЖ9-4 ГОСТ 18175-78.

Ц 15:47 Полоса нихромовая Х20Н80 ГОСТ 12766.5-90.

Ц 15:47 Свинец С1, С2

Ц 15:47 лом титана кусок и стружка

Ц 15:47 Монель, константан, копель алюмель, хромель.

Ч 15:47 Фланцы нержавеющие разных типов. Всегда в складе.

Ч 15:47 Трубы нержавеющие разных диаметров AISI 304 и 316.

Ч 15:45 Краны нержавеющие раных типов присоединения.

Т 15:45 Трубы 325 х 6, 8, 9 мм стальные

НОВОСТИ

18 Января 2017 17:26
Точение бюста на станке с ЧПУ

13 Января 2017 08:10
Частные дома из металлоконструкций (23 фото)

20 Января 2017 16:07
”Полиметалл” приобретает долю в серебряном месторождении Прогноз

20 Января 2017 15:53
Итальянский выпуск стали в 2016 году вырос на 6%

20 Января 2017 14:43
”Северсталь” объявляет операционные результаты за 4-й квартал и 12 месяцев 2016 года

20 Января 2017 13:37
”Алтай-Кокс” достиг рекордного показателя энергоэффективности

20 Января 2017 12:45
Производственные результаты ”ЕВРАЗа” за 4-й квартал и весь 2016 год

НОВЫЕ СТАТЬИ

Современные микросхемы - основные виды

Мелкие крепежи для электромонтажных, сантехнических и строительных работ

Латунная труба и прокат в промышленности

Муфта и ниппель по ДТР

3 способа обустройства выносных балконов

Стабилизаторы напряжения и их особенности

Промышленное холодильное оборудование

Вентиляторные градирни и комплектующие для них

Электрические шкафы и комплектующие для них

Никелевая лента 79НМ

Разработка плана ликвидации аварий

Легкие каркасные металлоконструкции

Современные системы кондиционирования

Комплектующие и фурнитура для мебели

Обои для жилых и общественных помещений

Завод по производству металлоконструкций

Особенности и выбор рольставен

Охрана промышленных объектов и грузов

Мобильные лаборатории в промышленности

Металл для металлоконструкций

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.