Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Обработка металлов -> Электрохимическая обработка -> Основы ЭХО -> Основы ЭХО

Основы ЭХО

Оглавление статьи Страницы статьи:  1  2  3  ...  5  6  7  ...  20  21  22  ...  40  41  42 

ный раствор хлористого натрия. Жидкостно-абразивная обработка протекает устойчиво при 10—15%-ной концентрации его в воде. Однако применение электролита пониженной концентрации может привести к коррозии деталей из конструкционных сталей. Для предотвращения этого в электролит вводят небольшую дозу так называемого ингибитора коррозии: глицерина, нитрита натрия или кальцинированной соды. Рабочая температура такого электролита около 30°С. При электрохимической жидкостно-абразивной обработке деталей из алюминиевых и медных сплавов в качестве электролита используют 15—20%-ный раствор азотнокислого натрия, а при обработке деталей из сплавов на никелевой основе—20%-ный раствор сернокислого натрия.

Наиболее распространенные электролиты для размерного электрохимического формообразования приведены в табл. 1.2. Указанные в ней значения концентраций электролитов могут изменяться в зависимости от требований к производительности или качеству обработки, но не превышать концентрации насыщения.

Электролиты на основе солей при определенной концентрации в них компонентов становятся насыщенными, т. е. переходят в раствор, при определенной температуре которых добавление компонента не приводит к повышению его концентрации в растворе. Если добавленное в электролит количество компонента не растворяется в нем, а остается в виде кристаллов, то такой раствор является насыщенным.

В табл. 1.3 приведены значения предельной концентрации компонентов для некоторых насыщенных электролитов при 20°С. При ЭХО с использованием насыщенных электролитов из-за попадания в межэлектродный промежуток твердых частиц

(кристаллов) часто нарушается процесс обработки и одновременно с этим ускоряется механическое изнашивание элементов оборудования, соприкасающихся с электролитом.

Анодно-механическую отрезку выполняют обычно в электролите на основе жидкого стекла Na2Si03, содержание которого в воде обычно не превышает 30—40%, рабочая температура электролита около 30°С.

Электрохимическое шлифование производят с использованием водного раствора азотнокислого натрия 5—10%-ной концентрации, в который добавляют 1—3% азотистокислого натрия NaN02. Такой электролит применяют для электрохонингования и суперфиниширования деталей из различных металлов. Рабочая температура электролита 25°С.

Для электроэрозионно-химической обработки применяют те же электролиты, что и для размерной ЭХО.

От состава, концентрации и рабочей температуры электролита зависит наиболее важное его свойство — удельная электропроводность, являющаяся величиной, обратно пропорциональной удельному сопротивлению р электролита (х = 1 /р); выражается в сименс на метр (См/м). С увеличением концентрации электролита и его рабочей температуры удельная электропроводность также повышается. Электролиты с большей удельной электропроводностью обеспечивают прохождение через межэлектродный промежуток большего тока, т. е. ускоряют процессы электрохимического растворения. При электрохимическом формообразовании, когда скорости анодного растворения придают первостепенное значение, стремятся использовать электролиты с большей удельной электропроводностью и, наоборот, при выполнении отделочных операций, когда необходимо повысить качество обрабатываемых поверхностей, первостепенное значение приобретает состав электролита, а удельная электропроводность имеет второстепенное значение.

Удельная электропроводность водных растворов нейтральных солей (см. табл. 1.2, кроме НС1) даже при их концентрации,

близкой к насыщению, значительно ниже электропроводности кислотных растворов, имеющих слабую концентрацию. Однако, несмотря на указанное преимущество, кислотные растворы применяют очень редко. Это объясняется необходимостью создания коррозионно-стойкой аппаратуры и вентиляционных устройств, что усложняет конструкцию установок. Кроме того, повышается опасность травмирования оператора.

Активность ионов водорода в растворах электролита характеризуется водородным показателем рН и оказывает в некоторых случаях существенное влияние на производительность. Так, при размерной ЭХО конструкционных сталей из-за значительного выделения водорода происходит повышение активности его ионов, в результате чего наступает замедление скорости формообразования, и, наоборот, при снижении активности ионов водорода, что наблюдается с уменьшением выделяемого водорода, процесс формообразования ускоряется, но в последнем случае понижается, например, качество обработанной поверхности. Для предотвращения таких явлений значение рН поддерживают в процессе обработки в заданных пределах. Корректировку рН производят за счет введения в электролиты небольших доз других компонентов, например азотной кислоты

HN03.

При выполнении формообразующих операций скорость истечения электролита через межэлектродный промежуток оказывает существенное влияние на скорость формообразования и своевременное стабильное удаление продуктов растворения. Так, если доступ электролита на некоторые участки межэлектродного промежутка по каким-либо причинам затруднен или полностью прекращен, то нормальное течение процесса ЭХО в этом случае нарушается. Для нормализации процесса ЭХО необходимо, в частности, своевременно удалить продукты растворения (шлам) из рабочей зоны, что обеспечивается при скорости истечения электролита от 5 до 20 м/с.

С увеличением содержания шлама скорость истечения электролита в межэлектродном промежутке заметно падает, а в случае превышения нормы содержания шлама в электролите процесс ЭХО полностью прекращается. Интенсивность выделения шлама при ЭХО можно характеризовать таким примером. Если катод и анод поместить в 1 л электролита (рис. 1.18), то при прохождении электрического тока в 2 А за 1 ч образуется слой шлама, занимающий более 15% объема электролита. Поэтому очень важное значение придается

своевременной и качественной очистке электролитов от продуктов электролиза.

Очистка электролита. На практике существует несколько способов очистки электролитов: центрифугирование, фильтрование, отстаивание и флотация.

Центрифугирование — это процесс удаления из жидкости твердых частиц, т. е. шлама, под действием центробежных сил. Протекает этот процесс в специальных агрегатах—центрифугах.

При фильтровании загрязненный шламом электролит пропускают через фильтрующую ткань с мельчайшими отверстиями. Для этого способа очистки применяют фильтры-прессы.

Отстаивание электролита производят в специальных отстойниках. Этот способ очистки имеет ограниченное применение из-за большой продолжительности (5—8 ч) отстаивания и значительных потерь электролита вместе со шламом.

Флотационный способ очистки основан на способности частиц шлама всплывать на поверхность электролита вместе с пузырьками выделяющегося при электролизе водорода. Для ускорения и улучшения очистки в очистное устройство подают воздух. Всплывающие на поверхность очищаемого электролита частицы шлама удерживаются от оседания пеной. Пенный слой создается за счет добавления в электролит пенообразующего вещества — 0,4 г натриевого мыла на 1 л. Этот способ обеспечивает качественную очистку электролита при незначительном содержании шлама (до 5%) в электролите. Недостатком флотационной очистки является, как и при отстаивании, значительный расход электролита.

Необходимость очистки электролита от шлама определяется особенностями процессов ЭХО и зависит во многом от их технологических параметров, например от межэлектродного промежутка. Для различных процессов ЭХО минимально допустимое количество шлама в электролите различно и указывается в технологической документации в граммах на литр. Качество очистки электролитов проверяют с помощью специальных приборов — мутномеров. При отсутствии таких приборов или при необходимости проверки правильной их работы качество очистки электролита оценивают по контрольной дозе, которую отстаивают в течение 1—3 ч. Качество очистки электролита определяют соотношением (рис. 1.19) высоты а осевшего шлама к высоте б контрольной дозы; чем меньше значение l, тем выше качество очистки. Зная l и имея график, представленный на рис. 1.19, можно определить содержание шлама в электролите, выраженное в граммах на литр. Очищенный электролит обогащают по мере необходимости компонентами или разбавляют водой и вновь используют по назначению.

Оглавление статьи Страницы статьи:  1  2  3  ...  5  6  7  ...  20  21  22  ...  40  41  42 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.06.27   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

06:00 Товарный бетон М200

05:51 Товарный бетон М150

05:21 Товарный бетон М100, доставка в Москве

14:33 Устройства дренажные НРУ, ВРУ, ДРУ щелевые, щелёванные трубы-лучи ФИПа

14:32 Щелевая труба (лучи) для фильтров, колпачки щелевые ВТИ-К, К-500

14:32 Трубы-лучи щелевые для фильтров ФИПа, ФОВ, ФСУ

14:32 Трубы распределительные (ДРУ) щелевые для фильтров ХВО

14:32 Дренажное устройство распределительное щелевого типа для фильтров ФИПа

14:32 Щелёванные трубы (НРУ) для фильтров ФИПа, ФОВ, колпачки щелевые ВТИ-К,

14:32 Луч НРУ щелевой для фильтров ФИПа, ФОВ, ФСУ колпачки щелевые ВТИ-К, К-

НОВОСТИ

23 Февраля 2018 17:19
Простые самодельные тиски

19 Февраля 2018 07:30
Десять глубочайших подземных рудников (фотоотчет)

25 Февраля 2018 12:51
Завод ”Уралкабель” в 2017 году увеличил объем выпуска автопроводов в 1,5 раза

25 Февраля 2018 10:01
АО ”ЗЭМЗ” освоило производство слябов нового сечения

25 Февраля 2018 08:59
”Русский Уголь”: 2018 год для рынка угля будет стабильным

24 Февраля 2018 17:35
Перуанский выпуск олова в 2017 году упал на 8%

24 Февраля 2018 16:25
АО ”ТД РЖД” и АО ”ВМЗ” заключили долгосрочный договор на поставку цельнокатаных колес

НОВЫЕ СТАТЬИ

Некоторые особенности открытия детского садика по франшизе

Лазерная эпиляция в Med City

Минитракторы и тракторы для сельского хозяйства

Строительная техника - основные аспекты использования

Товарный бетон и его разновидности

Плазмотроны для резки листового металла и их специфические особенности

Работы которые выполняют промышленные альпинисты

Ремонт автомобилей - какие из запчастей наиболее распространены

Какие виды крепежа получили наиболее широкое распространение

Сетка стальная - основные виды и назначение

Кабеленесущие системы - типовые компоненты

Особенности применения некоторых современных лекарств

Аэропорт «Шереметьево» выбрал поставщика систем кондиционирования

Выбор и характеристики стиральных машин

Электрообогреватели и их основные особенности

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания ИванычЪ GROUP предлагает печать на футболках и промышленной спецодежде.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.