Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Научные исследования -> Карбонилы металлов и металлорганические соединения -> Карбонилы металлов и металлорганические соединения

Карбонилы металлов и металлорганические соединения

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  7  8  9 

на можно сопоставить волну.

Интересно, что, ничего не зная о работах Дэвиссона и Джермера, всего несколько месяцев спустя Джордж П. Томсон вместе со своим учеником А. Ридом также наблюдал дифракцию электронов. Направив пучки электронов на металлическую фольгу и кристаллические порошки и применив простое фотографирование, они получили дифракционную картину. Этот эксперимент особенно прост и нагляден.

Такое же явление наблюдал и советский физик П. С. Тартаковский. Независимо от американских коллег он также обнаружил явление дифракции электронов.

Дэвиссон так комментировал одновременность и независимость опытов, проведенных разными учеными:

«Средства, необходимые для этого открытия, имелись в любой лаборатории мира и постоянно употреблялись там уже более четверти века. И все же в этом совпадении нет ничего удивительного. Открытия в физике делаются тогда, когда приходит их время, и не раньше. Наступает момент, и неизбежное совершается чуть ли не в одно и то же мгновение даже в самых удаленных друг от друга местах».

Идея корпускулярно-волнового дуализма (двойственности) природы частиц оказалась чрезвычайно плодотворной. Она стала одним из краеугольных камней фундамента квантовой механики и Теории строения атомов и молекул.

Зададимся таким вопросом; если электрон — это не только частица, но и волна, то как же ведет себя эта волна не в свободном движении пучка электронов, набегающих на пластинку металла, а в связанном состоянии и что такое связанное состояние электронов? Связанное

состояние электрона — это такое состояние, при котором электрон движется в атоме, удерживаемый полем ядра.

Задачу о волновом движении электрона в атоме решил преподаватель из Цюриха швейцарский физик Эрвин Шрёдингер. Исходя из идеи Луи де Бройля о двойственной природе электрона, он для описания движения электрона в атоме воспользовался рассмотрением поведения стоячей волны в трехмерном пространстве. Стоячая одномерная волна наглядно описывается моделью закрепленной колеблющейся струны. Эти колебания могут происходить с различной частотой, но в любом случае по длине укладывается целое число полуволн (п = 1, 2, 3) за счет наложения «граничных условий».

В нашем случае такими граничными условиями являются неподвижность и закрепленность концов струны. Это приводит к тому, что возникают различные дискретные состояния колебаний струны, которые описываются с помощью числа п, принимающего только целочисленные значения. Чтобы перейти к двумерной стоячей волне, рассмотрим поведение шкуры барабана. В этом случае описание усложняется, и для характеристики состояний мы должны уже воспользоваться не одним числом п, а двумя.

Наконец, для описания трехмерной стоячей волны требуются уже три характеристики. Математики называют такого рода задачи задачами «на собственные значения». Такую задачу о стоячей трехмерной электронной волне в атоме как раз и удалось поставить и решить Шрёдингеру.

Однако оставался еще один «маленький вопрос»: какой физический смысл имеет амплитуда электронной волны (ф), фигурирующая в уравнении Шрёдингера?

Ведь волновая амплитуда может иметь как положительное, так и отрицательное значение, а электрон заряжен отрицательно. Шрёдингер считал, что физический смысл имеет не сама функция ф, а квадрат ее модуля |ф|2 и это не что иное, как распределение электронной плотности.

В дальнейшем, однако, утвердилась статистическая интерпретация |ф|2, предложенная А. Вернером, В. К. Гепзенбергом и М. Борном, согласно которой величина |ф(х, у, z, t)|2 представляет собой вероятность обнаружения электрона в момент t в окрестности точки пространства с координатами х, у, z. Иными словами, электрон не «размазан» в пространстве, а с различной вероятностью пребывает в некоторых точках х, у, z. Большей шрёдингеровской электронной плотности соответствует большая вероятность Гейзенберга.

1.3. Карбонилы металлов —

сто тысяч «почему»

1.3.1. Открытие карбонилов металлов

Любопытна история открытия класса карбонилов металлов. В середине прошлого века во многих европейских городах для освещения улиц использовались газовые фонари. Все они имели один очень существенный недостаток — по мере горения светильного газа, несмотря на постоянную его подачу, яркость свечения фонаря постепенно падала. При этом было замечено, что причиной уменьшения яркости является забивка сеток «колпачков накаливания» фонарей порошками железа и его оксида.

Приблизительно в это же время образование металлических и оксидных пленок и порошков было обнаружено и в других самых неожиданных местах — внутри и на концах железных трубок и никелевых вентилей, по которым пропускалась смесь монооксида углерода и водорода, на кирпичной кладке при обжиге кокса, в керамических печах и даже... в газообразном водороде.

При внимательном рассмотрении нельзя было не заметить, что во всех этих случаях, где, казалось бы «из ничего» получался металл, всегда присутствовал монооксид углерода, СО, который соприкасался с металлическими поверхностями.

Поскольку в то время никому и в голову не могло прийти, что металлы могут реагировать с СО, т. е. с «угарным газом», все эти факты требовали научного объяснения.

В 1888 г. английский ученый Людвиг Монд исследовал газообразную смесь, которая выходила через никелевые вентили из автоклава, заполненного монооксидом углерода и водородом. Эта газообразная смесь окрашивала пламя горелки в яркий цвет и оставляла па нагретой поверхности стеклянной колбы зеркало из металлического никеля. Так Монд открыл первое соединение монооксида углерода с металлом — тетракарбонил никеля, Ni(CO)4, Тетракарбонил никеля удивительно легко разлагается, давая металл в виде никелевого покрытия (на нагретой поверхности) и мелкого никелевого порошка (в объеме).

Несколько позже было получено и другое соединение этого класса — пентакарбонил железа, Fe(CO)5, который и являлся «виновником» забивки железным порошком сетки колпачков накаливания в газовых фонарях. А порошок красно-бурого цвета — это оксид железа, продукт сгорания железа, выделившегося из пентакарбонила железа.

Вот схема образования порошкового налета в сетках колпачков накаливания газовых фонарей:

Fe (железная труба) + СО (газ)- Fe(CO)5(Kap6oнил железа),

Fe(CO)5 Fe (черный порошок) + 5СО (газ),

4Fe (черный порошок) + 302(в воздухе) -

2Fe203(красный порошок).

Началу промышленного получения пентакарбонила железа помог случай, происшедший в 1916 г. на одном из заводов в Германии. Рядом с цехом лежал всеми забытый старый стальной баллон, в котором несколько лет хранилась под давлением смесь водорода и монооксида углерода.

Баллон зачем-то понадобился, его вскрыли и неожиданно обнаружили внутри светло-коричневую жидкость с запахом, напоминающим запах дорожной пыли. Немецкие химики — народ любознательный и педантичный. Они тщательно проанализировали странную жидкость и установили, что в баллоне образовался пентакарбонил железа. Как же это произошло?

Напрашивается следующая схема образования пен-

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  7  8  9 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.09.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

15:41 TransSteel2200 компактный сварочный инверторный источник

19:45 Zinc powder 66 isotope Zn-66

11:26 КСМ:Лайн - сериализация и агрегация выпускаемой продукции

11:22 Труба б/у 530х8

22:31 Не много о Гильотинной резке

17:59 Труба бу. Оптом от 20 тонн.

09:14 Кабель вббшв, вбв, ввг, пв, ас, а, сип, аабл и другой купим остатки по

09:10 купим имидофлекс, лэтсар, стеклоткань, лакоткань, оргстекло, неликвиды

08:04 Куплю Олово, Припой, Цинк, Никель

15:52 Вывоз металлолома. Металлолом.

НОВОСТИ

20 Мая 2018 17:53
Самые необычные скульптуры из металла (21 фото)

20 Мая 2018 17:02
Самодельная мельница из болгарки

21 Мая 2018 17:43
”Северсталь” инвестирует в венчурные проекты в области технологий в материалах

21 Мая 2018 17:14
Китайский среднесуточный выпуск стали в начале мая вырос на 1,7%

21 Мая 2018 16:23
ПАО ”КМЗ” увеличит выплавку ферромарганца

21 Мая 2018 15:16
Южнокорейский импорт стального лома в апреле вырос на 23%

21 Мая 2018 14:05
”РЭП Холдинг” отгрузил электротехнический комплекс на Усть-Тегусское месторождение

НОВЫЕ СТАТЬИ

Бетонные лотки от DRENLINE – ваше эффективное решение задачи строительства водоотвода

Входные металлические двери с отделкой МДФ

Фланцы ГОСТ 12820-80: преимущества и особенности продукции

Особенности выбора и классификация металлочерепицы

Профнастил для забора - какой бывает и как его отличить от других видов

Профнастил в строительстве - основные виды и использование

Профнастил, как выбрать его правильно?

Основные виды бытовок и их назначение

Таможенное оформление грузов: виды растаможивания, основные этапы, нюансы

Фасады для частных домов

Каким образом осуществляется прокат авто

Полупрозрачные рольставни

Виды работ при демонтаже зданий и сооружений

Доклевеллеры для промышленной деятельности

Квадратная труба и другой металлопрокат

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

ПАРТНЕРЫ

Обратите внимание на широкий ассортимент металлопроката от нашего партнера https://scsmp.ru "Сибирского Центра Стали"

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2018 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.