Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!
Полезные статьи -> Научные исследования -> Карбонилы металлов и металлорганические соединения -> Часть 3

Карбонилы металлов и металлорганические соединения (Часть 3)

только в текущем разделе

Страницы:    1  2  3  4  5  6  7  8  9   

«укомплектована» электронами и не имеет пустых («вакантных») мест, поэтому в образовании химических связей электроны предвнешней оболочки непереходных элементов никогда не участвуют. Валентность атомов таких элементов определяется количеством электронов, находящихся на внешней электронной оболочке. В образовании прочной ковалентной связи Е—С участвуют два электрона, один из них принадлежит атому углерода, а другой — непереходному элементу. Такая связь называется о-связью и характерна для всех элементоорганических соединений непереходных элементов.

У переходных металлов (титана, циркония, ванадия, ниобия, а также всех металлов VI—VIII групп п др.) не до конца заполнена предвнешняя оболочка (она содержит больше 8, но меньше 18 электронов). Из них 8 электронов составляют устойчивый октет (2s- и 6р-электронов), а все последующие электроны (начиная с девятого) располагаются на оболочке, вмещающей до десяти электронов (это так называемые d-орбитали).

Другими словами, переходные металлы всегда имеют «недостроенную» d-оболочку с вакансиями для приема дополнительных электронов. Переходные металлы стремятся к «достройке» своей предвнешней оболочки до устойчивой 18-электронной системы. Такая «достройка» происходит путем образования химических связей с участием d-электронов.

1.2.1. «Архитектура» молекул

Теперь следует поговорить об устройстве металлоорганических молекул, а также о том, каким образом обеспечивается это устройство. Когда знакомишься с архитектурой молекул элементоорганических соединений, сразу поражает обилие экзотических структур и, так сказать, масса «архитектурных излишеств». При этом оказывается, что «неподражаемая странность» свойственна соединениям как непереходных, так и переходных элементов.

Мы нарисовали молекулу триметилалюминия — вот она:

Казалось бы, все ясно, трехвалентный алюминий образует три ковалентные связи с углеродами трех метильных групп. Не тут-то было! На самом деле эти молекулы устроены сложнее — это димеры.

В димере каждый атом алюминия связан с четырьмя метильными группами, т. е. координационное число алюминия равно четырем. Мало того, только четыре из шести имеющихся в димерной молекуле метильные группы ведут себя «правильно», а две оставшиеся — совершенно странным образом: связываются одновременно с двумя атомами алюминия.

Но триметилалюминий — это еще простая молекула. Рассмотрим теперь молекулу карборана. Это соединение может быть получено при взаимодействии бороводорода (в10н10) с ацетиленом (с2Н2) в слабом электрическом разряде. Брутто-формула карборана простая — В10Н10С2Н2, но вот структура... Это очень красивая, похожая на китайский фонарик, клетка с 12 вершинами, имеющая 20 граней (так называемый икосаэдр).

Каждый атом в вершине карборанового фонарика имеет пять соседей. Но, кроме того, он еще связан и с атомом водорода! Получается, что и у атомов бора, и у атомов углерода координационное число равно шести. Как же тогда обстоит дело с их валентностью?!

Если же обратиться к химии переходных элементов, то картина становится еще более сложной. Рассмотрим сначала наиболее «простой» пример — тетракарбонил никеля, Ni(CO)4. В молекуле Ni(CO)4 атом переходного металла никеля имеет тетраэдрическое окружение — сам он находится в центре, а вершины тетраэдра занимают лиганды СО.

Но оксид углерода — нейтральная

молекула. Каковы же в этом случае

заряд и валентность никеля? Может быть, это и не химическое соединение вовсе, а просто оксид углерода, адсорбированный металлическим ни-

келем? Ничуть не бывало, ведь никель — это, как известно, металл, СО — газ, a Ni(CO)4 — легколетучая при обычных условиях жидкость.

Теперь другой пример. Все мы знаем, что представляет собой молекула бензола — это плоский шестиугольник, состоящий из тригональных атомов углерода, связанных друг с другом и атомами водорода:

Бензол образует с хромом удивительную молекулу — дибензолхром, (С6Н6)2Сг. В ней атом хрома зажат между плоскостями бензольных колец, создавая таким образом сразу 12 связей с атомами углерода!

Неужели хром в дибензолхроме двенадцативалентен? Ведь если исходить из обычных представлений, то это получается вроде бы именно так. Однако это, конечно, не так!

Причина такой экзотической «неразберихи» лежит в природе электрона, на которой мы и остановимся ниже.

1.2.2. Поговорим об электронах

Чтобы сориентироваться в причудливом мире молекулярных форм элементоорганических соединений, необходимо разобраться в закономерностях, управляющих формированием химических связей. Большая роль в раскрытии сущности этих закономерностей принадлежит французскому ученому Луи де Бройлю.

Луи де Бройль заинтересовался физической природой рентгеновских лучей, которые он начал изучать. В этой области в то время многое оставалось неясным. Он серьезно занялся исследованием природы излучения, изучил работы Альберта Эйнштейна в области световых квантов.

В 1922 г. Луи де Бройль пишет в одной из заметок, что он пришел «к идее, что, может быть, нужно найти общее синтезирующее понятие, которое позволило бы объединить точку зрения волновой теории с точкой зрения корпускулярной».

И уже в 1924 г. Луи де Бройль представил Парижской академии наук три доклада, сделавшие его имя знаменитым. Эта работа легла в основу волновой механики. Даже нас, современных читателей, поражает не только смелость идей молодого ученого, но и исключительная простота использованных в них математических средств.

Идея де Бройля состояла в том, что всем без исключения видам материи — электронам, протонам, атомам и т. д.— присущ корпускулярно-волновой дуализм, т. е. они имеют двойную природу — и частицы, и волны. Он вывел удивительное уравнение:

Это уравнение объединяет величины, которые, казалось бы, объединять нельзя: волновую характеристику — длину волны (А,) и типичную характеристику изолированной частицы — массу (т). Уравнение де Бройля утверждает, что любой частице с массой т, движущейся со скоростью v, соответствует волна с длиной А, (h — константа Планка, названная им «квантом действия», h=6,548.10-27 эрг.сек). (При достаточно малых т (например, те=0,9109534.10-27 г) и сравнительно небольших v (v — скорость движения электрона в атоме водорода) это волновое движение можно обнаружить.)

Несколько ранее американский ученый К. Дж. Дэвиссон и его ученик Л. Джермер, изучая явление испускания вторичных электронов, обнаружили, что при испускании электронов наблюдается такое же их рассеяние (т. е. дифракция), как и в случае испускания волн (например, света или рентгеновских лучей). В то время они не смогли дать объяснения наблюдаемому ими явлению (ведь электрон считался частицей). Лишь в 1926 г., узнав о гипотезе Луи де Бройля, они поняли, что теперь полученные ими результаты могут быть объяснены. В 1927 г., проводя опыты по рассеянию электронов на никелевой пластинке, они обнаружили дифракционную картину, подобную той, которая получается при рассеянии рентгеновских лучей. Это означало, что одномерному свободному движению электро-

Страницы:    1  2  3  4  5  6  7  8  9   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Металлография
Карбонилы металлов и металлорганические соединения
Выращивание металла в газовой фазе
Различные аспекты газофазной металлизации
Тугоплавкие соединения редкоземельных металлов
Измерение толщины металлических покрытий
• Размерная стабильность титановых сплавов
• Повышение сопротивления микропластическим деформациям медных сплавов

НОВЫЕ ОБЪЯВЛЕНИЯ

Т 17:42 Затвор дисковый поворотный DN100 производства ЛМЗ

Т 14:33 Изготовление пресс-форм для литья пластмасс

У 14:33 Cверление отверстий в металле

Т 14:33 Двухрядные сферические роликовые подшипники

Ч 14:27 Проволока стальная марки 12Х18Н10Т (ТС)

Ч 14:27 Проволока стальная марки 12Х18Н10Т

Ч 14:27 Проволока стальная сварочная марки ER307Si

Ч 14:27 ХН77ТЮР проволока 4,5 мм

Ц 14:27 Круг алюминиевый, марка Д16

Ц 14:27 ХН77ТЮР проволока ф 8мм

Ч 14:27 Лента нихром Х20Н80 0,2х6 мм

Ц 14:27 Хромель

НОВОСТИ

30 Сентября 2016 14:18
Самодельный станок с ЧПУ

27 Сентября 2016 14:19
115-летний вуппертальский монорельс (20 фото, 1 видео)

1 Октября 2016 16:05
На причалах ”Ростерминалуголь” погружено 13 млн. тонн угля с начала года

1 Октября 2016 15:02
Американский импорт стальной арматуры в августе упал на 23,3%

1 Октября 2016 14:51
Агентство ”Moody’s” присвоило ”Polyus Gold International Limited” рейтинг на уровне ”Ва1”

1 Октября 2016 13:32
Выпуск чугуна в странах СНГ в августе вырос на 1,2%

1 Октября 2016 12:28
Первый контракт МК ”Сплав” с ”Минскэнерго” завершен успешно

НОВЫЕ СТАТЬИ

Процедура регистрации ИП для строителей

Опоры контактной сети железных дорог и электротехническое оборудование

Оборудование для переработки макулатуры

Машины для обработки кромки

Как нужно зарабатывать на сдаче металлолома сегодня

Качественный утеплитель для дома

Арматура для отопительных радиаторов - основные разовидности

Турбокомпрессоры в автомашинах и спецтехнике

Общие основы использования горячекатанного нержавеющего квадрата в производстве

Квадратный прокат из нержавеющий стали - виды и применение

Круг горячекатаный в разных отраслях промышленности

Классификация кругов и прутков нержавеющих

Нержавеющая стальная проволока - общие сведения

Основные виды сварочной проволоки из нержавейки

Обзор автокранов и их назначение

Строительство и борьба с грунтом

Международное право в области иммиграции

Как применяются резервуары в различных отраслях промышленности

Проволока сварочная Св-06Х19Н9Т для сварки легированных сталей

Сетка нержавеющая сварная - виды и особенности

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.