Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Научные исследования -> Измерение толщины металлических покрытий -> Измерение толщины металлических покрытий

Измерение толщины металлических покрытий

Оглавление статьи Страницы статьи:  1  2  3  4  5 

азотированием и гальваническим никелированием) слоев толщиной примерно до 10 мм, нанесенных на ферромагнитный основной материал, с погрешностью около 10—15 %. Измерения проводятся в отдельных точках и всегда дискретны.

11.1.2.2. Методы, основанные на измерении магнитного потока

Плотность магнитного потока зависит от магнитной проницаемости материала, через который проходят магнитные силовые линии. Если в замкнутый контур магнитных силовых линий ввести ферромагнитный материал с неферромагнитным или слабо ферромагнитным покрытием, то плотность магнитного потока может служить мерой толщины этого покрытия.

На рис. 11.8 показана схема измерения изменения магнитного потока с помощью так называемого зонда Холла. Принцип измерения толщины покрытия посредством фиксации изменения геометрии магнитных силовых линий пояснен на рис. 11.9.

Этот метод позволяет измерять толщину неферромагнитных или слабо ферромагнитных (лаковых, цинковых, медных, свинцовых и др.) покрытий, нанесенных на ферромагнитный основной материал. Диапазон измеряемых толщин составляет от 0 до 10 мм, погрешность измерений — около ±10%. При использовании двухполюсного ярма всегда определяют сумму толщин слоев, лежащих ниже обоих сердечников полюсов.

Измерения производятся в точках и всегда дискретно.

11.1.2.3. Метод, основанный на измерении магнитной индукции

На сердечник катушки устанавливают вторую (измерительную) обмотку, в которой индуцируется напряжение, пропорциональное магнитному потоку. Это напряжение, которое после усиления и выпрямления индуцируется стрелочным прибором, при прочих равных условиях является мерой толщины покрытия.

На рис. 11.10 показаны схемы двух устройств, предназначенных для измерения толщины покрытия этим методом.

Метод, основанный на измерении магнитной индукции, позволяет измерять толщину неферромагнитных покрытий, нанесенных на ферромагнитный основной материал. Диапазон измеряемых толщин — от 0 до 10 мм, средняя погрешность измерений невелика и составляет от ±3 до ±5 %.

При большой глубине проникновения магнитного поля можно измерять также толщину ферромагнитных покрытий, нанесенных на неферромагнитный основной ма

териал. При этих условиях толщина измеряемого слоя в большинстве случаев должна быть, как правило, меньше 1 мм.

Аппаратура проста по конструкции и в обслуживании, она позволяет проводить измерения в точках, причем только в дискретном режиме.

И. 1.3. ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ

Многие электрические характеристики материала при определенных условиях прямо зависят от его толщины. К ним относятся электропроводность, диэлектрические свойства изолирующих слоев и индукция тока под действием электромагнитного поля. Разработано несколько методов, основанных на измерении этих характеристик.

11.1.3.1. Методы измерения электропроводности

Существуют различные методы измерения толщины покрытия, в основе которых лежит измерение электропроводности. Но основным принципом, используемым во всех вариантах, является зависимость электрического сопротивления материала покрытия от его толщины. Два из таких варианта схематически показаны.

Рис. 11.11 иллюстрирует схему измерения поверхностного сопротивления токопроводящего покрытия на токонепроводящем основном материале. С помощью зондов A1 и A2 через покрытия пропускают ток I. Пропорциональное сопротивлению напря

жение U, возникающее на зондах S1 и S2, индицируется на шкале, калиброванной в единицах длины в соответствии со следующим соотношением:

U/I = 1 /ds. (11.3)

Если ток I постоянный, то измеряемое напряжение U обратно пропорционально толщине ds покрытия и наоборот: при постоянном напряжении U ток I пропорционален ds. Измеренное значение соответствует средней толщине покрытия между зондами S1 и S2.

Этим методом можно измерять толщину покрытий из токопроводящего или полупроводящего материала, нанесенного на непроводящий основной материал. Он позволяет измерять толщины от 0 до 30 мм в зависимости от материала покрытия, причем погрешность измерений может составлять ±2%. Процесс измерений—дискретный.

Простое устройство пригодно также для измерений толщины покрытий из окисных материалов, нанесенных на алюминий, цинк, кадмий, серебро и олово; ошибка измерений составляет ±15%. Измерения производятся дискретно.

Один из вариантов этого метода позволяет измерять начальный диффузионный ток. Его величина примерно пропорциональна толщине тонкого токонепроводящего покрытия, нанесенного на проводящий основной материал. При этом приложенное напряжение повышают до тех пор, пока незадолго до достижения напряжения пробоя между зондами через образец не начнет протекать так называемый начальный диффузионный ток. В этот момент величина тока, фиксируемого с помощью гальванометра, резко возрастает.

11.1.3.2. Емкостной метод

Конденсатор с катушкой образуют колебательный контур, имеющий определенную резонансную частоту.

Если диэлектрик конденсатора изменяется, например, за счет увеличения или уменьшения толщины изолирующего покрытия, то частота колебательного контура также изменяется. При этом толщина покрытия ds пропорциональна квадрату частоты колебательного контура (ds — f2).

Толщина покрытия определяется следующим соотношением:

da = eА (2пf)2 L,

где е — диэлектрическая проницаемость; А — площадь измерительного электрода; f — частота колебательного контура; L—индуктивность катушки.

Так как у специальных измерительных устройств 4п2 eAL = const, то

ds= Кf2. (11.5)

Этот дискретный метол пригоден для измерения толщины токонепроводящих покрытий, превышающих 0,01 мкм, нанесенных на проводящий основной материал. Погрешность измерений составляет примерно +5 %.

11.1.3.3. Метод измерения вихревых токов

11.1.3.3. Метод измерения вихревых токов

Если через катушку пропустить переменный ток, то в расположенном под нею токо-проводящем металле возникают вихревые токи, которые посредством индукции оказывают воздействие на первичный ток катушки. Это изменение первичного тока зависит от электрических и магнитных свойств, а также геометрии и, следовательно, толщины металлического слоя.

Этот метод универсален и применим для самых различных комбинаций материалов, поскольку электропроводности при соответствующих составах материала покрытия и основного материала или магнитные проницаемости в случае ферромагнитных материалов достаточно различны. Точность измерения этим методом тем больше, чем больше это различие.

Метод измерения, основанный на измерении вихревых токов, чаще всего применяют для следующих комбинаций материалов:

— токонепроводящее покрытие (элоксаль, лак, пластмасса) на электропроводном неферромагнитном основном материале (Al, Си, Zn и их сплавы). Диапазон измеряемых толщин составляет от 0 до 500 мкм;

— электропроводный неферромагнитный слой (Al, Си, Zn и их сплавы) на токонепроводящем основном материале. При таких комбинациях материалов глубина проникновения вихревых токов должна быть больше, чем у измеряемого электропроводного покрытия. При этом можно измерять толщины от менее 1 мкм до нескольких мм;

— электропроводное неферромагнитное покрытие на электропроводном основном материале (например, медь на цинке, золото на латуни и т. п.). Основными условиями при этом являются: глубина проникновения вихревых токов должна быть больше толщины покрытия, а электропроводности материала покрытия и основного материала должны быть достаточно различны (примерно в три раза).

Погрешность измерений этим методом, имеющим различные варианты, составляет в среднем от +3 до ±5 %. Он позволяет осуществлять только дискретные измерения.

11.1.4. ТЕРМОЭЛЕКТРИЧЕСКИЙ МЕТОД

Этот метод измерения основан на использовании эффекта возникновения электрического напряжения между материалом покрытия и основным материалом, если между местами контактов имеется разность температур. Если испытательный щуп создает на поверхности слоя определенную температуру, то при заданной комбинации материалов термонапряжение, возникающее вследствие градиента температур в покрытии и основном материале, зависит от толщины покрытия.

Принцип термоэлектрического метода измерения показан .

Метод применим для всех комбинаций материалов, которые обеспечивают термонапряжение, достаточно большое для надежных измерений (несколько сот мкВ),

Оглавление статьи Страницы статьи:  1  2  3  4  5 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.12.12   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:13 Круг 80, сталь 20

12:13 Труба 108, склад Ярославль

12:12 Лист 12 мм, склад Ярославль

12:12 Круг 95, сталь 20

12:12 Круг 16, сталь 20

12:12 Арматура 12мм, со склада Ярославль

12:04 Отливки чугунные круглые

12:04 Круг чугунный СЧ20 из наличия

12:02 Песок стальной технический 0.63 в МКР

12:02 Дробь стальная литая. Дробь ДСЛ. ГОСТ 11964-81

НОВОСТИ

26 Февраля 2017 17:09
Самодельный мини-холодильник из компьютерного кулера с элементом Пельтье

22 Февраля 2017 17:42
Самодельный гидравлический дровокол (14 фото)

26 Февраля 2017 17:42
Выпуск чугуна в странах СНГ в январе вырос на 5,6%

26 Февраля 2017 16:42
На ”ЧСЗ” построят барабанный смеситель для мариупольского металлургического комбината

26 Февраля 2017 15:41
Южнокорейский импорт стального лома в январе вырос на 22%

26 Февраля 2017 15:07
Выпуск чугуна в странах ЕС в январе вырос на 4%

26 Февраля 2017 14:33
В 2017 году ”НЭВЗ” построит для ”РЖД” 284 секции пассажирских и грузовых электровозов

НОВЫЕ СТАТЬИ

Лазерная резка металлических листовых материалов

Изготовление деталей из проволоки

Некоторые особенности участия в современных тендерах

Советы по выбору металлической двери

Оборудование для обработки листового металла

Аппараты точечной контактной сварки (споттеры)

Боксы биологической безопасности для лабораторий

Блоки управления для двигателей и электротехнического оборудования

Выбор стеллажей для склада

Основные классы лома черных металлов

Дроссели для регулировки гидравлических систем

Характерные особенности оцинкованных воздуховодов

Бурение скважины на воду с использованием интернет-сервиса

Особенности и виды современных лотерей

Медный прокат и его поставщики

Котлы для промышленных целей

Сорбенты для очистки и фильтрации

Автоматика для ворот - приводы и другое оборудование

Как правильно выбрать качественный электродвигатель серии ДАЗО, А4, А4F

Отличные окна из дерева по честной цене

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.