Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Научные исследования -> Измерение толщины металлических покрытий -> Измерение толщины металлических покрытий

Измерение толщины металлических покрытий

Оглавление статьи Страницы статьи:  1  2  3  4  5 

азотированием и гальваническим никелированием) слоев толщиной примерно до 10 мм, нанесенных на ферромагнитный основной материал, с погрешностью около 10—15 %. Измерения проводятся в отдельных точках и всегда дискретны.

11.1.2.2. Методы, основанные на измерении магнитного потока

Плотность магнитного потока зависит от магнитной проницаемости материала, через который проходят магнитные силовые линии. Если в замкнутый контур магнитных силовых линий ввести ферромагнитный материал с неферромагнитным или слабо ферромагнитным покрытием, то плотность магнитного потока может служить мерой толщины этого покрытия.

На рис. 11.8 показана схема измерения изменения магнитного потока с помощью так называемого зонда Холла. Принцип измерения толщины покрытия посредством фиксации изменения геометрии магнитных силовых линий пояснен на рис. 11.9.

Этот метод позволяет измерять толщину неферромагнитных или слабо ферромагнитных (лаковых, цинковых, медных, свинцовых и др.) покрытий, нанесенных на ферромагнитный основной материал. Диапазон измеряемых толщин составляет от 0 до 10 мм, погрешность измерений — около ±10%. При использовании двухполюсного ярма всегда определяют сумму толщин слоев, лежащих ниже обоих сердечников полюсов.

Измерения производятся в точках и всегда дискретно.

11.1.2.3. Метод, основанный на измерении магнитной индукции

На сердечник катушки устанавливают вторую (измерительную) обмотку, в которой индуцируется напряжение, пропорциональное магнитному потоку. Это напряжение, которое после усиления и выпрямления индуцируется стрелочным прибором, при прочих равных условиях является мерой толщины покрытия.

На рис. 11.10 показаны схемы двух устройств, предназначенных для измерения толщины покрытия этим методом.

Метод, основанный на измерении магнитной индукции, позволяет измерять толщину неферромагнитных покрытий, нанесенных на ферромагнитный основной материал. Диапазон измеряемых толщин — от 0 до 10 мм, средняя погрешность измерений невелика и составляет от ±3 до ±5 %.

При большой глубине проникновения магнитного поля можно измерять также толщину ферромагнитных покрытий, нанесенных на неферромагнитный основной ма

териал. При этих условиях толщина измеряемого слоя в большинстве случаев должна быть, как правило, меньше 1 мм.

Аппаратура проста по конструкции и в обслуживании, она позволяет проводить измерения в точках, причем только в дискретном режиме.

И. 1.3. ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ

Многие электрические характеристики материала при определенных условиях прямо зависят от его толщины. К ним относятся электропроводность, диэлектрические свойства изолирующих слоев и индукция тока под действием электромагнитного поля. Разработано несколько методов, основанных на измерении этих характеристик.

11.1.3.1. Методы измерения электропроводности

Существуют различные методы измерения толщины покрытия, в основе которых лежит измерение электропроводности. Но основным принципом, используемым во всех вариантах, является зависимость электрического сопротивления материала покрытия от его толщины. Два из таких варианта схематически показаны.

Рис. 11.11 иллюстрирует схему измерения поверхностного сопротивления токопроводящего покрытия на токонепроводящем основном материале. С помощью зондов A1 и A2 через покрытия пропускают ток I. Пропорциональное сопротивлению напря

жение U, возникающее на зондах S1 и S2, индицируется на шкале, калиброванной в единицах длины в соответствии со следующим соотношением:

U/I = 1 /ds. (11.3)

Если ток I постоянный, то измеряемое напряжение U обратно пропорционально толщине ds покрытия и наоборот: при постоянном напряжении U ток I пропорционален ds. Измеренное значение соответствует средней толщине покрытия между зондами S1 и S2.

Этим методом можно измерять толщину покрытий из токопроводящего или полупроводящего материала, нанесенного на непроводящий основной материал. Он позволяет измерять толщины от 0 до 30 мм в зависимости от материала покрытия, причем погрешность измерений может составлять ±2%. Процесс измерений—дискретный.

Простое устройство пригодно также для измерений толщины покрытий из окисных материалов, нанесенных на алюминий, цинк, кадмий, серебро и олово; ошибка измерений составляет ±15%. Измерения производятся дискретно.

Один из вариантов этого метода позволяет измерять начальный диффузионный ток. Его величина примерно пропорциональна толщине тонкого токонепроводящего покрытия, нанесенного на проводящий основной материал. При этом приложенное напряжение повышают до тех пор, пока незадолго до достижения напряжения пробоя между зондами через образец не начнет протекать так называемый начальный диффузионный ток. В этот момент величина тока, фиксируемого с помощью гальванометра, резко возрастает.

11.1.3.2. Емкостной метод

Конденсатор с катушкой образуют колебательный контур, имеющий определенную резонансную частоту.

Если диэлектрик конденсатора изменяется, например, за счет увеличения или уменьшения толщины изолирующего покрытия, то частота колебательного контура также изменяется. При этом толщина покрытия ds пропорциональна квадрату частоты колебательного контура (ds — f2).

Толщина покрытия определяется следующим соотношением:

da = eА (2пf)2 L,

где е — диэлектрическая проницаемость; А — площадь измерительного электрода; f — частота колебательного контура; L—индуктивность катушки.

Так как у специальных измерительных устройств 4п2 eAL = const, то

ds= Кf2. (11.5)

Этот дискретный метол пригоден для измерения толщины токонепроводящих покрытий, превышающих 0,01 мкм, нанесенных на проводящий основной материал. Погрешность измерений составляет примерно +5 %.

11.1.3.3. Метод измерения вихревых токов

11.1.3.3. Метод измерения вихревых токов

Если через катушку пропустить переменный ток, то в расположенном под нею токо-проводящем металле возникают вихревые токи, которые посредством индукции оказывают воздействие на первичный ток катушки. Это изменение первичного тока зависит от электрических и магнитных свойств, а также геометрии и, следовательно, толщины металлического слоя.

Этот метод универсален и применим для самых различных комбинаций материалов, поскольку электропроводности при соответствующих составах материала покрытия и основного материала или магнитные проницаемости в случае ферромагнитных материалов достаточно различны. Точность измерения этим методом тем больше, чем больше это различие.

Метод измерения, основанный на измерении вихревых токов, чаще всего применяют для следующих комбинаций материалов:

— токонепроводящее покрытие (элоксаль, лак, пластмасса) на электропроводном неферромагнитном основном материале (Al, Си, Zn и их сплавы). Диапазон измеряемых толщин составляет от 0 до 500 мкм;

— электропроводный неферромагнитный слой (Al, Си, Zn и их сплавы) на токонепроводящем основном материале. При таких комбинациях материалов глубина проникновения вихревых токов должна быть больше, чем у измеряемого электропроводного покрытия. При этом можно измерять толщины от менее 1 мкм до нескольких мм;

— электропроводное неферромагнитное покрытие на электропроводном основном материале (например, медь на цинке, золото на латуни и т. п.). Основными условиями при этом являются: глубина проникновения вихревых токов должна быть больше толщины покрытия, а электропроводности материала покрытия и основного материала должны быть достаточно различны (примерно в три раза).

Погрешность измерений этим методом, имеющим различные варианты, составляет в среднем от +3 до ±5 %. Он позволяет осуществлять только дискретные измерения.

11.1.4. ТЕРМОЭЛЕКТРИЧЕСКИЙ МЕТОД

Этот метод измерения основан на использовании эффекта возникновения электрического напряжения между материалом покрытия и основным материалом, если между местами контактов имеется разность температур. Если испытательный щуп создает на поверхности слоя определенную температуру, то при заданной комбинации материалов термонапряжение, возникающее вследствие градиента температур в покрытии и основном материале, зависит от толщины покрытия.

Принцип термоэлектрического метода измерения показан .

Метод применим для всех комбинаций материалов, которые обеспечивают термонапряжение, достаточно большое для надежных измерений (несколько сот мкВ),

Оглавление статьи Страницы статьи:  1  2  3  4  5 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.12.12   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:50 Заклепки алюминиевые ударные оптом

12:47 Продаются круги шх15 оптом.

10:48 Купим подшипники разные

08:49 Труба ТФ 89х7 НД-2-2-20 2У1

07:39 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

07:39 Сварочный генератор ГД 2х2503, генератор ГД 4004,

07:39 Дизельные электростанции АД 150

17:51 Металлорежущие станки плазменной и газовой резки

17:50 Проектирование и изготовление пресс-форм

17:11 Пресс-форма по образу или оригиналу изделия

НОВОСТИ

22 Марта 2017 17:47
Различные виды сварки трением

22 Марта 2017 14:08
Необычные строения из алюминия в Японии (17 фото)

20 Марта 2017 23:31
Станки и оборудование специалисты смогут выбрать на выставке Mashex Siberia

24 Марта 2017 16:07
Запасы готовой стали в Китае в начале марта выросли на 7,95%

24 Марта 2017 15:01
В трубопрессовом цехе ”КраМЗа” смонтирована установка для ”теплой” прокатки труб

24 Марта 2017 14:08
Мировой выпуск прямовосстановленного железа в феврале 2017 года вырос на 9,4%

24 Марта 2017 13:43
В 2017 году УК ”Кузбассразрезуголь” увеличит инвестиции в производство на 2 млрд. рублей

24 Марта 2017 12:07
Мировой выпуск стали в феврале 2017 года вырос на 4,1%

НОВЫЕ СТАТЬИ

Основные виды натурального камня

Труба из нержавеющей стали: классификация и область применения

Разновидности труб из коррозионностойкой стали и их применение в бытовых и промышленных условиях

Труба нержавеющая 20Х23Н18 для химпрома

Труба нержавеющая в обеспечении комфортной работы предприятий

Купить металлопрокат в Тамбове

Что лучше: купить квартиру с отделкой или без отделки?

Технологии остекления балконов и цены в Киеве

Гравировка на металле: улучшаем офис для успеха в бизнесе

Кварцевый агломерат и виды искусственного камня

Теплый электрический пол для квартиры

Основные виды запчастей для автомобильного двигателя

Электрические защитные автоматы для квартиры

Распространенные сертификаты в промышленности

Решетчатые и прессованные настилы в промышленности

Использование трубы нержавеющей 12Х18Н10Т в машиностроении и других остраслях

Труба нержавеющая 10Х17Н13М2Т в отраслях промышленности

Труба нержавеющая 06ХН28МДТ в котельной промышленности

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.