Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!
Полезные статьи -> Черная металлургия -> Термоциклическая обработка -> Основы метода термоциклической обработки -> Часть 11

Основы метода термоциклической обработки (Часть 11)

только в текущем разделе

Страницы:    1  2  3  4  5  ...  11  12  13  14  15  ...  28  29  30  31  32   

Из условия совместности деформаций

где EAl, иAl, ESi, иSi — соответственно модули Юнга и коэффициенты Пуассона для алюминия и кремния. Зная рконт, по формулам (2.2) можно вычислить напряжения в двухфазном сплаве.

Таким образом, полученная формула позволяет оценить уровень напряжений, возникающих практически в любой двухфазной системе при изменении температуры в заданном диапазоне при условии упругого взаимодействия фаз. Так, по расчету при нагреве от 20 до 530 °С в сплаве САС-1 возможно появление напряжений растяжения (до 250 МПа), намного превышающих предел текучести алюминиевой матрицы. В реальном процессе картина выглядит иначе: изменение температуры сопровождается релаксацией напряжений. Однако для прогноза «температурных эффектов» целесообразно пользоваться данной формулой при условии наличия информации о составляющих структуру фазах.

Возникающие во время изменения температуры структурные напряжения во многом зависят от химического состава фаз. Если иметь в виду бинарные алюминиевые сплавы, то структурные напряжения должны повышаться адекватно увеличению разницы коэффициентов термического расширения матрицы и второй фазы, а следовательно, зависеть непосредственно от вводимых химических элементов; уровень напряжений должен повышаться в ряду Mg, Си, Ni, Si. В многокомпонентных сплавах можно наблюдать более сложную картину из-за присутствия в структуре нескольких избыточных фаз, в том числе тройных и более сложных интерметаллидов. Кроме того, возможно появление напряжений за счет градиентов температуры, разориентировки зерен, наличия текстуры и т. п.

Выполненные исследования по экспериментальному определению структурных напряжений в сплавах Al — Si показали, что в полуцикле нагрева напряжения сжатия на частицах кремния, имеющие место при 20 °С, понижаются в результате опережающего расширения алюминиевой матрицы, коэффициент термического расширения которой примерно в 4 раза больше, чем у кремния. По достижении температуры около 300 °С напряжения на кремнии становятся близкими к 0 и при дальнейшем нагреве до 530 °С почти не увеличиваются. Такой характер изменения напряжений свидетельствует о постоянной их релаксации при повышении температуры выше 300 °С за счет деформации алюминиевой матрицы. При охлаждении наблюдается обратная картина: начиная с температуры примерно 400 °С, напряжения сжатия на частицах кремния растут, достигая при 20 °С значения, несколько большего, чем первоначальное. Характер изменения напряжений в последующих циклах не меняется, изменяются лишь остаточные напряжения, увеличиваясь в первых четырех-пяти циклах.

Наглядной иллюстрацией релаксации напряжений являются микрорельефы, полученные при термоциклировании бинарного алюминиевого сплава, содержащего 4,1 % Си, по режиму 340 - 540 °С непосредственно в высокотемпературном микроскопе (рис. 2.24). Высокотемпературное травление границ зерен в процессе нагрева от 20 °С наступило при температуре приблизительно 450 °С, и сразу же стал появляться микрорельеф.

Как видно, микрорельеф при максимальной температуре цикла характеризует наличие однородного скольжения. При этом некоторые границы зерен служат препятствиями при прохождении деформации из зерна в зерно (из а в b), однако при благоприятной ориентировке зерен относительно друг друга (зерен с и d) происходит инициирование деформации в соседнем. В процессе охлаждения заметное изменение микрорельефа наблюдается до температуры примерно 450 °С, а именно деформацией охватываются все новые участки. При дальнейшем охлаждении до температуры 340 °С, характерный микрорельеф постепенно исчезает. Это согласуется с данными, полученными при изучении напряжений в Сплавах Al — Si, у которых деформация алюминиевой матрицы при термоциклировании имеет место при температуре выше 300 °С. При повторных нагревах микрорельеф характеризуется наличием множественного скольжения.

Особенности изменения дислокационной структуры после ТЦО изучали на сплавах алюминия с содержанием Si, % : 1; 6,3; 20,5. Плотность дислокаций определяли по методу «секущей», заключающемуся в подсчете числа пересечений линии с индивидуальными дислокациями. Плотность дислокаций p = 2NM/(2nRh), где N — число пересечений окружности радиусом R с дислокациями; М — увеличение; h — толщина прозрачного» слоя фольги, равная 2-10-7 м.

На рис. 2.25 представлена характерная дислокационная структура сплава Al+1 % Si в исходном состоянии и после ТЦО. В алюминиевой матрице дислокации распределены сравнительно равномерно по зерну, их плотность составляет в среднем 3,6-1013 м-2. Дислокационная структура слабо меняется при термоциклировании, но все же плотность дислокаций увеличивается на 30—50 %. Следует отметить несколько большую долю дислокационных петель после ТЦО по сравнению с исходным состоянием. Это типичное следствие резкого переохлаждения сплава, имеющего место в последнем цикле. При этом избыточные вакансии вызывают наряду с «переползанием» краевых и образованием из винтовых дислокаций дислокаций геликоидальной формы, возникновение петель Франка-Рида вакансионного происхождения. Незначительное изменение в дислокационной структуре объясняется, по-видимому, исчезновением образующихся при резком охлаждении в воде (закалке) дислокаций за счет их существенного переползания и выхода на свободную поверхность кристалла либо на границы зерен. Это возможно, если дислокации в материале преимущественно краевые. Наличие краевых дислокаций подтверждается практически полным отсутствием после ТО геликоидальных дислокаций, которые обязательно образовались бы из винтовых в условиях избытка вакансий. Кроме того, отсутствие в сплаве фаз с различными коэффициентами линейного расширения не приводит к возникновению межфазных внутренних напряжений и деформаций при ТО и связанных с этим зарождением и размножением дислокаций.

У сплава Al + 6,3% Si в исходном состоянии в структуре имеется значительное число вторичных кристаллов кремния пластинчатой и глобулярной формы с размерами порядка 0,1—0,5 мкм, выделившихся из твердого раствора в результате охлаждения сплава до комнатной температуры после завершения процесса кристаллизации (рис. 2.26). Дислокации распределены неравномерно и сосредоточены главным образом около этих выделений. Под действием ТО вторичный кремний растворяется, а число дислокаций растет.

После ТЦО средняя плотность дислокаций увеличивается почти в 5 раз (от 2,2-1013 до 1014 м-2.) Дислокации в матрице распределены сравнительно равномерно (рис. 2.27, а). Кроме того, в структуре наблюдается значительное число дислокаций, имеющих форму геликоидов (рис. 2.27,б), а также встречаются дислокационные скопления в виде жгутов (рис. 2.27, в). Следует отметить, что на дислокационную структуру как при изотермической выдержке под закалку, так и при ТЦО оказывает влияние разкое охлаждение в воде, имеющее место по завершении обработки. Поэтому общее число дислокаций, возможно, несколько завышено по сравнению с тем, которое может иметь место к концу каждой операции.

На рис. 2.28 показано изменение дислокационной структуры силумина (Al+6,3% Si) по мере нарастания числа циклов. На основании полученных данных можно заключить, что при ТЦО происходит последовательное накопление дислокаций от цикла к циклу. В связи с этим необходимо отметить, что в полуцикле нагрева часть дислокаций аннигилирует.

Страницы:    1  2  3  4  5  ...  11  12  13  14  15  ...  28  29  30  31  32   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Основы метода термоциклической обработки
Специальные методы термоциклической обработки

НОВЫЕ ОБЪЯВЛЕНИЯ

Ч 16:33 Высокопрочная сталь. Износостойкая сталь. Высокопрочные леги

Ч 16:33 Износостойкие, броневые и закаливаемые стали

Т 16:33 Стеклопластиковый настил и профили ТУ 2296-004-68696326-2015

Ц 16:33 предлагаем титановый прокат

Ч 16:18 Перфорированный лист в наличии и под заказ

Т 16:12 Решетчатый стальной настил в наличии

Ч 16:12 Труба 1020х13

Т 15:54 Продажа кабельных муфт

Т 15:51 3д сканирование, литье в силиконовые формы

У 15:51 Литье пластмасс под давлением, пресс-форы

Ц 15:39 Прокат цветного и нержавеющего металла,из наличия

Т 15:04 Прототипы, литье в силиконовые формы

НОВОСТИ

28 Сентября 2016 17:55
Станок для обрезки копыт

27 Сентября 2016 14:19
115-летний вуппертальский монорельс (20 фото, 1 видео)

29 Сентября 2016 15:35
Китайский выпуск катанки за 8 месяцев упал на 2,9%

29 Сентября 2016 14:42
”ММК” получил свидетельство о регистрации товарного знака MAGSTRONG

29 Сентября 2016 13:13
Выпуск чугуна в странах ЕС в августе 2016 года вырос на 1,1%

29 Сентября 2016 12:56
”Золото Дельмачик” выдаст первый слиток в июле 2017 года

29 Сентября 2016 11:21
Добыча золота в Гане в первом полугодии выросла на 38,6%

НОВЫЕ СТАТЬИ

Машины для обработки кромки

Как нужно зарабатывать на сдаче металлолома сегодня

Качественный утеплитель для дома

Арматура для отопительных радиаторов - основные разовидности

Турбокомпрессоры в автомашинах и спецтехнике

Общие основы использования горячекатанного нержавеющего квадрата в производстве

Квадратный прокат из нержавеющий стали - виды и применение

Круг горячекатаный в разных отраслях промышленности

Классификация кругов и прутков нержавеющих

Нержавеющая стальная проволока - общие сведения

Основные виды сварочной проволоки из нержавейки

Обзор автокранов и их назначение

Строительство и борьба с грунтом

Международное право в области иммиграции

Как применяются резервуары в различных отраслях промышленности

Проволока сварочная Св-06Х19Н9Т для сварки легированных сталей

Сетка нержавеющая сварная - виды и особенности

Проволока нержавеющая сварочная и её применение в промышленности

Прием металлолома в Москве

Болты - технология, свойства, применение

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.