Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Черная металлургия -> Термоциклическая обработка -> Основы метода термоциклической обработки -> Основы метода термоциклической обработки

Основы метода термоциклической обработки

Оглавление статьи Страницы статьи:  1  2  3  ...  10  11  12  ...  15  16  17  ...  30  31  32 

руются промышленные алюминиевые сплавы; во-вторых, структура сплавов, содержащих перечисленные химические элементы, различна.

Так, в сплавах Al — Si образуются ограниченные твердые растворы с небольшим пределом растворимости кремния в алюминии— 1,65% (по массе) при температуре эвтектического превращения 577 °С. В доэвтектических сплавах с массовым содержанием кремния более 1,65 % помимо твердого раствора присутствует эвтектика (по разным данным, 11,7—12,5% Si), в заэвтектических—кристаллы первичного кремния и эвтектика. Соединений с алюминием кремний не образует.

В сплавах А1—Mg более широкая, чем в сплавах А1—Si, область твердых растворов с предельной растворимостью магния в алюминии — 17,4 % (по массе) при температуре эвтектического превращения 450 °С. В равновесии с алюминиевым твердым раствором находится B-фаза Mg5Al8(36 % Mg). Эта фаза входит по составу в область гомогенности (34,8 — 37,1 % Mg) и соответствует большинству данных, характеризующих кристаллическую структуру. B-фаза образует с алюминиевым твердым раствором эвтектику, содержащую около 34 % Mg. Кроме того, если коэффициенты линейного расширения кремния и алюминия отличаются друг от друга более чем в 6 раз, то их значения для алюминия и магния довольно близки. Поэтому эффект от термоциклировании таких разных по своему химическому и структурному составам материалов также должен быть различным, а это дает более глубокие представления для анализа влияния ТЦО на структуру и свойства алюминиевых сплавов.

Сплавы А1 — Zn отличаются от предыдущих очень высоким пределом растворимости цинка в алюминии, который составляет 70 % при температуре перетектического превращения 443 °С. В сплавах имеется область расслоения твердых растворов (49—69,5 % Zn), а также фаза ZnAI, образующаяся по перетектической реакции при 443 °С (Ж + А1- -ZnAI).

На рис. 2.12 показано влияние числа циклов п на электропроводность исследуемых алюминиево-кремниевых сплавов. Кривые построены на основании расчетов соответствующих экспериментов.

Из рисунка видно, что для всех композиций сплавов А1—Si с увеличением числа циклов (350-530 °С) электрическая проводимость снижается, достигая минимума при 10—15 циклах. Скорости нагрева и охлаждения в циклах 0,8—1 °С/с. При дальнейшем возрастании числа циклов в сплавах с массовым содержанием кремния до 1 % электрическая проводимость не меняется, оставаясь на достигнутом уровне. В сплавах с более высоким содержанием кремния по мере роста числа циклов до 20— 25 электрическая проводимость возрастает. Изменение электрической

проводимости, являющейся структурно-чувствительным свойством, связано с определенными процессами, происходящими в сплавах при ТО. Она зависит от химического состава концентрации легирующих элементов в твердом растворе, наличия вакансии, дислокаций, пор, микротрещин, а также от размера и числа частиц избыточных фаз.

Все химические элементы уменьшают электрическую проводимость алюминия. Кроме того, известно, что степень повышения электросопротивления, приходящаяся на 1 % легирующего элемента, выше, если он находится в твердом растворе, а не в виде отдельной фазы. Исключение составляет лишь цинк (табл. 2.1.

Таким образом, снижение электрической проводимости в сплавах А1—Si происходит в основном в результате увеличения концентрации кремния в твердом растворе. Процесс порообразования, который приводит к подобному изменению электрической проводимости, не получает развития при таком ограниченном числе циклов. Кроме того, прогрессирующий процесс порообразования должен был бы вызвать непрерывное понижение электрической проводимости по мере нарастания числа циклов, чего не наблюдается в действительности.

В сплавах с содержанием кремния ниже предела растворимости его в алюминии снижение электрической проводимости в первых циклах, повидимому, связано с растворением той незначительной части избыточного кремния, которая образовалась в результате неравновесной кристаллизации сплава. Поэтому дальнейшее увеличение числа циклов не изменяет электрической проводимости. В сплавах с более высоким содержанием кремния при увеличении числа циклов до 20—25 наблюдается рост электрической проводимости. Объяснить подобное явление можно на основе исследования структуры термоциклированных сплавов. На рис. 2.13 показаны характерные структуры алюминиево-кремниевых сплавов с различным количеством кремния до и после ТЦО. В исходной литой структуре доэвтектического сплава присутствуют дендриты твердого раствора и эвтектика.

В структуре заэвтектического сплава помимо эвтектики имеются крупные кристаллы первичного кремния в форме неправильных многоугольников. После ТЦО произошли изменения формы и размеров частиц кремния в эвтектике. После 10 циклов отчетливо наблюдаются диспергирование игольчатых частиц кремния и их сфероидизация. При этом твердость алюминиевой матрицы в сплаве А1 +9,3 %Si увеличивается от 21 до 25 МПа, а в сплаве Al + 20,5 % Si — от 15 до 19 МПа. По-видимому, именно растворение и измельчение кремния вносят основной вклад в явление снижения электрической проводимости при ТЦО. После 20 циклов в обоих сплавах заметно значительное увеличение размеров зерен эвтектического кремния за счет их коалесценции, что может служить одной из причин повышения электрической проводимости в высококремнистых сплавах (см. рис. 2.12), так как при этом сказывается уменьшение искажения решетки по границам кремниевых кристаллов.

При исследовании процесса диффузии нужно было установить характер распределения кремния в твердом растворе термоциклированных

сплавов. Однородность распределения кремния в твердом растворе оценивали по дисперсии средней концентрации, которую находили по формуле

где ^Сi = С — Сi, С — среднее значение концентрации химического элемента серии измерений; Сi — текущее значение концентрации; п — число измерений. При этом чем больше дисперсия, тем выше неоднородность, и наоборот. На рис. 2.14 показано изменение средней концентрации кремния и ее дисперсии при ТЦО некоторых алюминиево-кремниевых сплавов. При ТЦО происходит не только растворение, но и перераспределение кремния в твердом растворе, в результате чего повышается однородность твердого раствора. Характерно, что в сплаве, содержащем 9,3 % Si, это выражено значительно сильнее, чем в сплаве с содержанием 1 % Si, у которого в исходном состоянии распределение кремния в твердом растворе более однородно.

Подобный комплекс исследований был выполнен на бинарных сплавах А1—Mg и А1—Zn. ТЦО сплавов Mg проводили по следующим режимам:

Максимальную температуру в циклах выбирали из расчета на 40—50 °С ниже линии солидуса. При этом интервал температур в циклах для всех сплавов оставался постоянным и равным 140 °С. Средние скорости нагрева и охлаждение в циклах также не изменялись и составляли

0,8—1 °С/с.

На рис. 2.15 показано изменение электрической проводимости G в зависимости от числа циклов п. Из рисунка следует, что ТЦО малолегированных сплавов с содержанием менее 0,8 % Mg практически

Оглавление статьи Страницы статьи:  1  2  3  ...  10  11  12  ...  15  16  17  ...  30  31  32 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.02.18   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

17:12 Поковка сталь 4Х5МФС

08:51 Купим фторопласт Ф4, Ф4к20, стеклоткань, стеклолента, текстолит неликв

08:44 Закупаем прокат титана круг, проволоку, поковку, нихром остатки, с хра

08:34 Труба нержавеющая 57х4,0 ст12Х18Н10Т ГОСТ 9941-81

18:01 Предлагаем станок токарный ИТ-1М.

16:59 Вентиляторный завод приглашает к сотрудничеству

14:41 Дизельные электростанции АД 150-Т400-РГ

14:41 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

13:27 Труба ТФ 89х7 НД-2-2-20 2У1

13:25 Сварочные агрегаты адд 4004, адд 4004 вг и др

НОВОСТИ

28 Марта 2017 17:10
Звучание неодимовых магнитов

22 Марта 2017 14:08
Необычные строения из алюминия в Японии (17 фото)

28 Марта 2017 17:18
Выпуск чугуна в странах СНГ в феврале упал на 2,9%

28 Марта 2017 16:15
Группа ”ЧТПЗ” объявляет финансовые результаты по итогам 2016 года в соответствии с МСФО

28 Марта 2017 15:15
Китайский экспорт толстолистовой стали в феврале упал на 14%

28 Марта 2017 14:13
”РУСАЛ” расширяет на ”КАЗе” производство продукции с добавленной стоимостью

28 Марта 2017 13:18
Южная Америка в феврале увеличила выплавку стали на 1,5%

НОВЫЕ СТАТЬИ

Изделия для печного и термического оборудования из нержавейки

Производство разных типов нержавеющих листов и их применение

Котельные жаропрочные и коррозионностойкие марки сталей

Сертификация и таможенное оформление грузоперевозок

Шаровые краны - основные виды и особенности

Распространенные марки стали для химического оборудования - сравнение и особенности

Высоколегированные жаропрочные стали для печного оборудования

Изготовление зубчатых колес и деталей по чертежам

Металлический штакетник и металлические решетки

Покупка картриджей в Москве – выгодное решение актуального вопроса

Пищевое оборудование из нержавеющих сталей

Лист нержавеющий холоднокатанный AISI 310S

Нержавеющий холоднокатанный и другие виды листового проката по AISI

Эффективность технологии ультразвуковой очистки поверхностей

Фурнитура и комплектующие для откатных ворот

Лист нержавеющий 08Х18Т1 в строительных и декоративных конструкциях

Лист нержавеющий AISI 409 - особенности марки и применение

Использование трубы нержавеющей 12Х18Н10Т в машиностроении и других остраслях

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.