Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!
Полезные статьи -> Черная металлургия -> Легированная конструкционная сталь -> Влияние легирующих элементов на свойства стали -> Часть 16

Влияние легирующих элементов на свойства стали (Часть 16)

только в текущем разделе

Страницы:    1  2  3  4  5  ...  16  17  18  19  20  ...  34  35  36  37  38   

Под влиянием легирования молибденом, даже при сравнительно незначительных его количествах (примерно 0,5%), существенно возрастает кратковременная и длительная прочность конструкционной стали при повышенных температурах нагрева. Эта особенность действия молибдена проявляется не только в термически улучшенном, но и других состояниях стали. На рис. 202 показана зависимость между напряжением и температурой, при которых время загрузки в 100 тыс. часов вызывает суммарную относительную деформацию, равную 0,001 см/см, У молибденовой стали (1) и у нелегированной стали (2) с 0,4% С. Положительное действие молибдена в отношении сохранения предела текучести на высоком уровне при повышенных температурах видно из рис. 203.

Влияние молибдена на кратковременную прочность при различных температурах иллюстрирует также рис. 204.

Заштрихованные области в соответствии с принятым обозначением

показывают возможные колебания свойств в углеродистой стали, содержащей от 0,13 до 0,43% С, а также в молибденовой стали с 0,19% С, 0,5% Мо и хромомолибденовой с 0,17% С, 0,8% Сг и 0,50% Мо. Из рис. 204 видно, что молибденовые, и особенно хромомолибденовые, стали при повышенных температурах (300—600°) имеют значительное преимущество по сравнению с нелегированной сталью. Это определяет целесообразность использования молибдена в качестве элемента для легирования сталей, работающих при повышенных температурах. Указанное влияние молибдена объясняется смещением в сторону более высоких температур района возврата и рекристаллизации стали при нагревании.

Вольфрам также повышает температуру рекристаллизации стали, однако влияние его на механические свойства при высоких температурах выражено слабее.

Ванадий. Влияние ванадия на механические свойства термически улучшенной стали можно проследить по рис. 205, на котором дано изменение механических свойств нелегированной стали в сопоставлении со свойствами стали с 0,21 и 0,37 V после отпуска при различных температурах. Присутствие ванадия в количестве порядка 0,2% и более вызывает значительное повышение устойчивости стали против отпуска. При температурах отпуска выше 400° резко замедляется падение предела прочности и твердости, а при отпуске около 550° обнаруживается эффект вторичной твердости. По эффективности действия на устойчивость стали против отпуска ванадий превосходит все другие элементы, в том числе и молибден.

Повышение прочности при введении в сталь ванадия одновременно сопровождается уменьшением пластичности (рис. 205) и вязкости. Следует, однако, за метить, что высокая устойчивость ванадиевых сталей против отпуска наблюдается только в тех случаях, когда предшествующая отпуску закалка производится с высоких температур нагрева (950° и выше), при которых достигается достаточно полное растворение ванадия в аустените.

Ванадиевые стали обнаруживают также повышенную кратковременную и длительную прочность в нагретом состоянии. Однако

этот эффект, обусловленный в основном процессами карбидообразования, наблюдается только в термически улучшенном состоянии и при условии, если рабочая температура стали не превосходит 600—650°.

Хромоникельмолибденовый комплекс. Выдающиеся свойства хромоникельмолибденовых сталей в термически улучшенном состоянии достаточно хорошо известны и вряд ли нуждаются в обстоятельных подтверждениях. На рис. 206 показаны механические свойства стали с 0,24% С; 1,25% Сг; 3,95% Ni и 0,41% Мо после закалки и последующего высокого отпуска при различных температурах. Обращает внимание хорошее сочетание показателей прочности, пластичности и вязкости. В табл. 75 по данным автора приведены механические свойства термически улучшенной хромоникельмолибденовой стали в сопоставлении со свойствами хромистой, никелевой и молибденовой сталей, имеющих примерно такое же содержание углерода и выплавленных в одинаковых условиях с хромоникельмолибденовой сталью. Нетрудно заметить (табл. 75), что после отпуска при одинаковых температурах хромоникельмолибденовые стали характеризуются значительно более высокими показателями прочности, чем хромистые, никелевые и молибденовые. Однако первые стали уступают вторым в отношении вязкости и пластичности. Последнее несколько затрудняет оценку свойств и, на первый взгляд, порождает некоторое недоумение, почему все же

хромоникельмолибденовые стали обнаруживают несомненные преимущества в жестких условиях работы (особенно при ударном нагружении) по сравнению с хромистыми, молибденовыми или хромомолибденовыми сталями при вполне удовлетворительной прокаливаемости тех и других в заданных сечениях. Это кажущееся противоречие легко разрешается, если подвергнуть хромоникельмолибденовые и другие стали, обработанные на одинаковую твердость, сравнительным испытаниям в более жестких условиях, например при отрицательных температурах на удар. В табл. 76 показано по данным автора изменение ударной вяз

кости различно легированной стали с одинаковым содержанием углерода (0,24—0,28%) в зависимости от температуры испытания после термического улучшения на твердость 235—217 Нв.

Из приведенных данных видно, что хромоникельмолибденовые стали обладают более высоким температурным запасом вязкости, чем другие стали, а следовательно, меньшей склонностью к хрупкому разрушению.

Таблица свидетельствует также о том, что чем выше содержание в стали никеля, тем большим температурным запасом вязкости она обладает. В табл. 77 приведены свойства никелевой и хромоникельмолибденовой стали с одинаковым содержанием никеля в улучшенном состоянии при твердости 235—217 Нв.

Страницы:    1  2  3  4  5  ...  16  17  18  19  20  ...  34  35  36  37  38   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Общая информация о легировании конструкционной стали
Свойства легированной стали при отпуске
Влияние легирующих элементов на свойства стали

НОВЫЕ ОБЪЯВЛЕНИЯ

Т 08:59 Запчасти для станочного и кранового оборудования.

Т 08:59 Колеса крановые, крюки.

Т 08:59 Запчасти для станочного и кранового оборудования.

Т 08:59 Колеса крановые,крюки.

Т 08:59 Колеса крановые, крюки

Ц 07:58 Лист медный 0,5х600х1500 М1т

Ч 07:56 Труба профильная 50х50х3

Ч 07:56 Профнастил для забора и кровли

Ч 07:56 Круг нержавеющий 08Х18Н10Т 40 мм

Ч 07:56 Круг стальной 10 мм

Ч 07:56 Труба стальная ВГП 32x3.2

Ч 07:56 Сетка оцинкованная 50х50х4 мм в картах 1000х2000

НОВОСТИ

27 Сентября 2016 14:19
115-летний вуппертальский монорельс (20 фото, 1 видео)

26 Сентября 2016 17:48
Змееподобный робот для подводного контроля

27 Сентября 2016 14:04
Китайский экспорт толстолистовой стали за 8 месяцев вырос на 2,4%

27 Сентября 2016 13:35
АО ”ФГК” нарастило перевозки черных металлов на Московской железной дороге

27 Сентября 2016 12:38
Список 10 стран-лидеров по выплавке стали в августе 2016 года

27 Сентября 2016 11:36
”Прииск Соловьевский” добыл 1622 кг золота

27 Сентября 2016 10:44
Тайваньский импорт стального лома в августе 2016 года вырос на 55%

НОВЫЕ СТАТЬИ

Общие основы использования горячекатанного нержавеющего квадрата в производстве

Квадратный прокат из нержавеющий стали - виды и применение

Круг горячекатаный в разных отраслях промышленности

Классификация кругов и прутков нержавеющих

Нержавеющая стальная проволока - общие сведения

Основные виды сварочной проволоки из нержавейки

Обзор автокранов и их назначение

Строительство и борьба с грунтом

Международное право в области иммиграции

Как применяются резервуары в различных отраслях промышленности

Проволока сварочная Св-06Х19Н9Т для сварки легированных сталей

Сетка нержавеющая сварная - виды и особенности

Проволока нержавеющая сварочная и её применение в промышленности

Прием металлолома в Москве

Болты - технология, свойства, применение

Разновидности систем кондиционирования, технические и эксплуатационные характеристики

Какая бывает керамическая плитка для полов

Как изготавливают трубопроводные отводы

Преобразователи напряжения от производителя

Лом меди: особенности оценки

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.