Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!
Полезные статьи -> Черная металлургия -> Легированная конструкционная сталь -> Свойства легированной стали при отпуске -> Часть 5

Свойства легированной стали при отпуске (Часть 5)

только в текущем разделе

Страницы:    1  2  3  4  5  6  7  8  9  10  ...  25  26  27  28  29   

В стали, содержащей 0,35% Мо через 200 час. отпуска при 600° наряду с цементитом появляется Мо2С (рис. 89).

К аналогичным выводам пришли И. Н. Богачев и В. Г. Пермяков, исследовавшие превращения при отпуске легированной стали магнитным методом и методом термоэлектродвижущей силы. Первично выделяющимся карбидом в обычных конструкционных сталях, по их данным, является карбид железа с концентрацией легирующих элементов, примерно равной их концентрации в мартенсите. Образование специальных карбидов является уже вторичным процессом в результате перестройки решетки выделявшихся карбидов в связи с концентрационным перераспределением карбидообразуюших элементов при повышенных температурах отпуска. После выделения карбидной фазы происходят сравнительно медленные процессы перераспределения легирующих элементов между карбидом и а-твердым раствором; карбид обогащается карбидообразующими элементами, а твердый раствор — некарбидообразующими.

Интенсивность процессов перераспределения определяется температурой отпуска. Для каждого легирующего элемента существует определенная температура, выше которой процессы перераспределения легирующих элементов заметно интенсифицируются.

Для марганца эта температура 350°, для хрома 450°, для вольфрама 550°, для молибдена 600°.

Влияние легирующих элементов на распад остаточного аустенита при отпуске изучалось сравнительно мало. Наиболее подробно этот вопрос был исследован В. Д. Садовским, установившим, что все легирующие элементы в той или другой мере задерживают распад остаточного аустенита при отпуске. Наиболее интенсивно задерживают распад остаточного аустенита марганец и хром. Молибден, вольфрам и ванадий оказывают относительно слабое влияние на устойчивость остаточного аустенита.

В. Д. Садовский обнаружил также факт появления двух максимумов скорости распада остаточного аустенита при отпуске в сталях, легированных карбидообразующими элементами. Температуры максимальной скорости распада разделены интервалом относительной устойчивости аустенита, аналогично тому, как это наблюдается на диаграммах изотермического распада переохлажденного аустенита. Необходимо отметить, что указанная аналогии несколько нарушается несовпадением температурных интервалов устойчивости переохлажденного аустенита и остаточного аустенита. Обычно первый максимум скорости превращения остаточного аустенита совпадает по температуре с соответствующим максимумом на диаграмме изотермического превращения аустенита, а второй максимум чаще всего сдвинут к более низким температурам,

И. Н. Богачев и В. Г. Пермяков подтвердили закономерности, найденные В. Д. Садовским. Они установили, что для хромистой стали максимумы скорости распада остаточного аустенита соответствовали интервалам 280—350° и 580—650°; для молибденовой стали 350 и 650°; причем обнаружили пониженную устойчивость аустенита во второй ступени распада по сравнению с соответствующим интервалом превращения переохлажденного аустенита в этих сталях.

Влияние легирующих элементов на рекристаллизацию феррита может проявляться при таких температурах отпуска, когда основная часть углерода выделяется из твердого раствора и структура стали представляет собой деформированные в результате фазового наклепа зерна а-железа и мелкодисперсные частицы карбида в различных стадиях коагуляции.

Рентгенографическое исследование по выяснению влияния легирующих элементов на кинетику рекристаллизации механически наклепанного легированного железа было проведено Л. И. Коганом и Р. И. Энтиным. При продолжительности

выдержки 10—20 мин. были установлены следующие температуры рекристаллизации для различных сплавов (°С):

выдержки 10—20 мин. были установлены следующие температуры рекристаллизации для различных сплавов (°С):

При выдержках при 570—575° в нелегированном железе или железе, легированном никелем, марганцем и кремнием, рекристаллизация начинается уже по истечении 1—3 мин.; в железе, легированном 2% Со, она начинается через 8—10 мин.; в железе, легированном 2о/0 Сг, — через 2—3 часа. Если железо легировано 1,5% W и 2% Мо, то даже при 600—610° рекристаллизация начинается только по истечении 3—4 час. Учитывая содержание легирующих элементов в атомных процентах, авторы располагают легирующие элементы по возрастающей степени интенсивности влияния их на температуру рекристаллизации механически наклепанного железа в следующем порядке: хром, кобальт, молибден и вольфрам.

Из работы Л. Н. Когана и Р. И. Энтина видна совершенно отчетливая картина существенного действия легирующих элементов на температурные границы рекристаллизации а-фазы. Однако было бы ошибочным считать, что температура рекристаллизации а-фазы при отпуске легированной стали будет точно совпадать с температурой рекристаллизации механически наклепанного, легированного теми же элементами железа. Предварительные наблюдения показывают, что в первом случае она будет существенно выше, чем во втором. Поэтому вышеприведенные данные следует рассматривать лишь как косвенные характеристики действия элементов на процессы рекристаллизации при отпуске закаленной стали.

В легированной стали процесс коагуляции карбидной фазы при отпуске протекает качественно так же, как в углеродистой. Однако легирующие элементы воздействуют на интенсивность этого процесса, повидимому, изменяя скорость диффузии углерода в феррите. Следует также отметить, что увеличение содержания углерода в стали ускоряет рост карбидных частиц при отпуске.

Легирующие элементы могут ускорять и замедлять процесс коагуляции карбидов при отпуске. Систематические исследования влияния различных элементов на скорость коагуляции карбидов показали, что никель (до 6%) и кобальт (до 3,5о/0) способствуют процессу коагуляции при отпуске и уменьшают дисперсность карбидных частиц.

Ванадий (до 1,4%), молибден (до 1,2%)*, хром (до 7%), марганец (до 2,5%) и кремний (до 3,0%) задерживают коагуляцию и увеличивают дисперсность карбидов.

Сравнительное влияние различных легирующих элементов на скорость роста карбидных частиц при добавке в среднеуглеродистую сталь с 0,4% С 1 о/0 легирующего элемента характеризуется следующими значениями (отпуск 700°):

Скорость роста карбидных

частиц при добавке никеля и марганца (отпуск 630°) характеризуется следующими величинами:

Необходимо заметить, что задерживающее влияние значительных добавок кремния на коагуляцию может осложняться при длительных выдержках (отпуск 700°) процессом графитизации. Между влиянием легирующих элементов на коагуляцию карбидов и указанной выше их ролью при распаде мартенсита существует прямая связь. Карбидообразующие элементы, препятствующие коагуляции, повышают устойчивость мартенсита, сохраняя на длительное время состояние неустойчивого равновесия между пересыщенным а-твердым раствором и дисперсными карбидами.

Процессы дисперсионного твердения наблюдаются в медьсодержащих сталях. Объясняется это существованием переменной растворимости меди в а-железе в зависимости от температуры (см. рис. 12 и 13). Из приведенных рисунков ясно, что процесс дисперсионного твердения, основанный на образовании в а-твердом растворе не различимых под микроскопом дисперсных частиц обогащенной медью фазы, может происходить только в сталях, содержащих медь в количествах, превышающих пределы растворимости ее в феррите при комнатных температу-рах(>0,35). Фактически данный процесс заметно проявляется при содержании примерно 0,6% Си и эффективное свое развитие получает, когда в стали количество меди достигает 1,3—1,5%.

Страницы:    1  2  3  4  5  6  7  8  9  10  ...  25  26  27  28  29   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Общая информация о легировании конструкционной стали
Свойства легированной стали при отпуске
Влияние легирующих элементов на свойства стали

НОВЫЕ ОБЪЯВЛЕНИЯ

Ч 06:29 Лист ст 10Г2ФБЮ от 45000р/тн

Ч 06:29 Лист 15ХСНД от 40000р/тн

Ч 06:29 Лист 17Г1С 31500р/тн

Ч 06:29 Лист ст 09Г2С от37500р/тн.

Ц 16:14 Прецизионный сплав – Лента марки 80НХС

Ч 16:14 Лента, прецизионный сплав, марки 47НД

Ц 16:14 Лента нержавеющая марки 12Х18Н10Т, ГОСТ 9940-81

Ц 16:14 Лента, прецизионный сплав, марка 79Н3М

Ц 16:14 Лента, прецизионный сплав, марки 49К2ФА

Ц 16:14 Лента, прецизионный сплав, марки 40НКМ

Ц 16:14 Лента, прецизионный сплав, марки 47НХР

Ч 16:13 Труба нержавеющая марки 10Х23Н18 в ассортименте

НОВОСТИ

27 Сентября 2016 14:19
115-летний вуппертальский монорельс (20 фото, 1 видео)

26 Сентября 2016 17:48
Змееподобный робот для подводного контроля

28 Сентября 2016 07:29
”Северсталь” поставит около 1 тыс. тонн специальных судосталей на АО ”ПО ”Севмаш”

27 Сентября 2016 17:16
Артель ”Прибрежная” добыла 55 кг золота

27 Сентября 2016 16:25
Азиатский выпуск чугуна в августе вырос на 3,8%

27 Сентября 2016 15:36
На ”Производстве полиметаллов” АО ”Уралэлектромедь” монтируют трубу, которая не ржавеет

27 Сентября 2016 14:04
Китайский экспорт толстолистовой стали за 8 месяцев вырос на 2,4%

НОВЫЕ СТАТЬИ

Арматура для отопительных радиаторов - основные разовидности

Турбокомпрессоры в автомашинах и спецтехнике

Общие основы использования горячекатанного нержавеющего квадрата в производстве

Квадратный прокат из нержавеющий стали - виды и применение

Круг горячекатаный в разных отраслях промышленности

Классификация кругов и прутков нержавеющих

Нержавеющая стальная проволока - общие сведения

Основные виды сварочной проволоки из нержавейки

Обзор автокранов и их назначение

Строительство и борьба с грунтом

Международное право в области иммиграции

Как применяются резервуары в различных отраслях промышленности

Проволока сварочная Св-06Х19Н9Т для сварки легированных сталей

Сетка нержавеющая сварная - виды и особенности

Проволока нержавеющая сварочная и её применение в промышленности

Прием металлолома в Москве

Болты - технология, свойства, применение

Разновидности систем кондиционирования, технические и эксплуатационные характеристики

Какая бывает керамическая плитка для полов

Как изготавливают трубопроводные отводы

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.