Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Черная металлургия -> Легированная конструкционная сталь -> Свойства легированной стали при отпуске -> Свойства легированной стали при отпуске

Свойства легированной стали при отпуске

Оглавление статьи Страницы статьи:  1  2  3  ...  14  15  16  ...  27  28  29 

ПРЕВРАЩЕНИЯ В ЛЕГИРОВАННОЙ СТАЛИ ПРИ ОТПУСКЕ

1. Общая характеристика превращений при отпуске

Процессы, происходящие при отпуске закаленной стали, были объектом многочисленных исследований как отечественных, так и зарубежных ученых. Однако решающее значение в формировании современных представлений о природе происходящих при отпуске явлений имели выдающиеся работы Г. В. Курдюмова и его школы; именно этой школе принадлежат за последние 10— 15 лет наиболее крупные открытия и теоретические обобщения в данной области. При характеристике процессов, происходящих при отпуске закаленной нелегированной стали, обычно различают три превращения, связанные с распадом мартенсита. Первое превращение начинается в области температур 80—120° (в зависимости от содержания углерода) и достигает своего максимума между 120 и 170°. Это превращение связано с уменьшением удельного объема стали и, кроме того, с понижением ее электросопротивления и с некоторым тепловым эффектом. При температуре выше 200° обнаруживается второе превращение, налагающееся на первое и отличающееся значительным тепловым эффектом, а также увеличением объема и электропроводности стали. Это превращение захватывает в углеродистой стали район температур 200—300° и с наибольшей интенсивностью совершается около 240—270°. Начиная с 300°, примерно до 400° наблюдается третье превращение, сопровождающееся уменьшением объема и приводящее сталь при высоких температурах последующего непрерывного нагрева к состоянию, близкому к равновесному.

Наиболее исчерпывающие сведения о сущности описанных превращений были получены путем рентгенографических исследований, проведенных Г. В. Курдюмовым и его школой. Было установлено, что превращения, наблюдаемые при нагреве закаленной стали, не связаны с какой-то определенной температурой, а захватывают весьма широкие температурные интервалы, частично накладывающиеся один на другой. Фиксируемые физико-химическим анализом резкие изменения свойств стали при определенных температурах отпуска в действительности

связаны просто с максимумами интенсивности происходящих процессов. Первое превращение сопровождается понижением тетрагональности (отношения параметров с/а) мартенсита и и выделением тончайших пластинок карбида из решетки пересыщенного а-твердого раствора, в связи с чем он обедняется углеродом. Процесс выделения карбида начинается при температурах, близких к комнатной, и достигает максимума в районе 150—170°. Полное выделение углерода из раствора, или, другими словами, окончательный распад мартенсита в углеродистой стали, наблюдается при нагреве до 350—400°.

Второе превращение при отпуске связано с распадом остаточного аустенита, продуктом которого являются карбид и а-твердый раствор с содержанием углерода, соответствующим отпущенному на данную температуру мартенситу.

Природа третьего превращения пока еще не вполне выяснена.

До последнего времени считалось, главным образом на основании работ Г. В. Курдюмова и его сотрудников, что в результате первого превращения из мартенсита выделяется не цементит, а промежуточный дисперсный карбид с не установленной окончательно формулой, условно обозначаемой символом Feх С. С этой точки зрения, третье превращение при отпуске трактовалось как карбидное превращение, приводящее к переходу карбида FeхC в карбид цементитного типа.

Таким образом, сталь, отпущенная на температуры, лежащие выше третьего превращения, должна представлять собой совокупность упруго деформированных зерен а-твердого раствора, почти не содержащего углерода и мелкодисперсных частичек цементита, расположенных в массе а-фазы. Однако в самое последнее время М. П. Арбузов получил данные, несколько расходящиеся с ранее высказанными взглядами. Из его работ вытекает, что кристаллическая структура карбида, образующегося в результате первого превращения при отпуске, не отличается от структуры цементита. Изменение рентгенографической картины при повышении температуры отпуска до З00—400°, которое ранее связывали с изменением состава и кристаллической решетки карбида, М. П. Арбузов объясняет только изменением формы и дисперсности частиц цементита и в особенности их взаимодействием (связанностью) с окружающим твердым раствором. Кристаллическая решетка выделяющихся при низких температурах отпуска пластинчатых частиц цементита, по определенным плоскостям, вероятно, сопряжена с решеткой а-фазы, и пограничные слои атомов принадлежат как цементиту, так и мартенситу. Такая взаимосвязь (когерентность) решеток нарушается при отпуске в районе 300—400°, в котором происходит обособление частичек цементита. Рентгенографическая картина

последнего процесса и трактовалась ранее как превращение карбида промежуточного тика в цементит.

При химическом исследовании состава карбидов, выделенных электролитическим растворением из отпущенной стали, для всех температур отпуска от 100 до 400° было установлено постоянство стехиометрического состава, соответствующего соотношению атомов железа и углерода в цементите [3 : 1]. Этот факт является дополнительным подтверждением того, что химические составы промежуточного карбида и цементита, повидимому, идентичны.

Механизм распада мартенсита при отпуске нелегированной стали, согласно учению Г. В. Курдюмова и теории распада пересыщенных твердых растворов, разработанной С. Т. Конобеевским, может быть в общих чертах представлен следующим образом.

В процессе зыделения углерода из пересыщенного а-твердого раствора наблюдаются две стадии. Первая стадия, протекающая весьма медленно при температурах, близких к комнатной, и быстро при 100—150°, состоит в образовании большого числа зародышей карбидных частиц, рост которых быстро затухает. Вокруг выделившихся частиц карбида твердый раствор обедняется углеродом. В результате роста зародышей карбида образуется неоднородная структура, называемая отпущенным мартенситом, состоящая из обедненных углеродом участков твердого раствора, окружающих дисперсные карбидные выделения, и основной массы твердого раствора, сохраняющего исходную концентрацию углерода.

При известной степени развития первой стадии превращения при изотермической выдержке процесс приостанавливается и наблюдается некоторое временное равновесие между карбидными частицами и окружающим их твердым раствором с пониженной концентрацией углерода. Это объясняется тем, что в результате выделения углерода из мартенсита достигается концентрация насыщения окружающего твердого раствора по отношению к частицам карбида данной степени дисперсности, несмотря на значительное пересыщение раствора углеродом для карбидных частиц большего размера.

Вторая стадия распада мартениста, распространяющаяся на интервал температур 150—300°, состоит в дальнейшем, весьма медленном, выделении углерода и приближении решетки твердого раствора к решетке а-железа. Малая скорость превращения в этой стадии связана с тем, что дальнейшее понижение концентрации твердого раствора происходит за счет выделения углерода в растущие путем коагуляции частицы карбида, что, в свою очередь, определяется для углеродистой стали главным

Оглавление статьи Страницы статьи:  1  2  3  ...  14  15  16  ...  27  28  29 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.01.21   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

13:04 Требуется новая труба 299х20 ст40Х в кол-ве 16м

10:50 Гальваническое покрытие, г. Пущино МО

09:52 Закупаем лом чугуна

18:30 Продаем кабель ВБбШв российского производства

11:58 Арматура во Владикавказе, Махачкале и Ростове

11:46 Арматура в Орле и Брянске

18:59 Продам дробленный графит, кокс, уголь, антрациты

13:31 Куплю свинец, олово, припой, цинк

12:43 Продаем подшипники для кондиционеров автомобилей

11:49 Грузоперевозки металла и негабаритных грузов по России

НОВОСТИ

22 Апреля 2018 17:06
Снос 86-летнего моста в американском штате Кентукки

18 Апреля 2018 08:29
Самые высокие американские горки, выполненные из стали (40 фото)

23 Апреля 2018 17:43
Тайваньский импорт ферросплавов в марте вырос на 39%

23 Апреля 2018 16:50
”ПГК” увеличила отправку черных металлов из Калужской области в южные порты

23 Апреля 2018 16:05
”Уралхиммаш” изготовит емкостное и реакторное оборудование для ООО ”ЗапСибНефтехим”

23 Апреля 2018 15:41
Китайский импорт коксующегося угля в 1-м квартале упал на 28%

23 Апреля 2018 14:21
Финансовые результаты ”GV Gold” за 2017 год

НОВЫЕ СТАТЬИ

Токарный автомат TORNOS GT13 впервые на выставке ПТЯ 2018

Создание эффективно работающей вентиляционной системы низкого давления

Типовое электротехническое модульное оборудование

Электрический теплый пол - виды и основные компоненты

Кровли из гибкой черепицы - особенности и применение

Профессиональная перевозка металлоконструкций

Ремонт квартир в Москве с бесплатным выездом замерщика!

Изготовление металлоконструкций - распространенные типы

Специальные/полуавтоматические заточные станки для фрез и свёрл

Отделка фасада сайдингом - особенности материала

Мансардные окна - распространенные типы

Подкровельные пленки и мембраны

Автоматические приводы для разных типов ворот

Контроль расхода топлива на автотранспорте для бизнеса

Алюминий и медь - самые распространенные виды металлолома

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

ПАРТНЕРЫ

Обратите внимание на широкий ассортимент металлопроката от нашего партнера https://scsmp.ru "Сибирского Центра Стали"

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2018 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.