Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Черная металлургия -> Легированная конструкционная сталь -> Общая информация о легировании конструкционной стали -> Общая информация о легировании конструкционной стали

Общая информация о легировании конструкционной стали

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  ...  10  11  12  ...  20  21  22 

На рис. 7 показаны пространственные решетки алмаза и графита. Нетрудно видеть, что каждый атом углерода в алмазе окружен четырьмя соседними атомами, размещенными в вершинах тетраэдра. Такое расположение атомов отвечает четырем «направлениям» гомеполярной связи углерода. Связь с каждым соседним атомом осуществляется общей для двух атомов парой электронов. Решетка алмаза является типичной для нескольких неметаллических элементов и, в частности, кремния. Графит имеет гексагональную некомпактную кристаллическую решетку; атомы углерода в этом случае оказываются расположенными слоями, причем в каждом слое они находятся в вершинах шестиугольников. В кристаллах графита действует одновременно несколько типов связи. В графите каждый атом, принадлежащий одному и тому же слою, связан силами ковалентной связи с тремя соседними. Четвертый электрон каждого атома становится общим для всего атомного слоя, что и обусловливает некоторую электропроводность графита. В то же время между отдельными слоями действуют полярные силы связи и отдельные слои представляют собой большие молекулы. Так как последний вид связи не отличается достаточной прочностью, то отделение атомных слоев графита друг от друга происходит с небольшой затратой энергии.

Существенной характеристикой кристаллической решетки является так называемое координационное число, т. е. число

атомов или ионов в кристаллах, находящихся на одинаковом, наиболее близком, расстоянии от заданного иона или атома. Координационное число определяется системой расположения атомов или ионов в пространстве и, следовательно, является постоянным для каждого из типов элементарных решеток. Так,

координационное число при расположении атомов или ионов в металле по типу куба с центрированными гранями всегда равно 12, куба объемноцентрированного — S, при гексагональной

плотно упакованной решетке

Если же при

гексагональной системе расположения ионов или атомов

существенно отличается от 1,633, т. е. решетка не является плотно упакованной, тогда координационное число равно 6, так как каждый атом или ион имеет лишь шесть соседей на одном расстоянии и шесть на другом.

Минимальные расстояния между центрами атомов или ионов в кристаллических решетках металлов называются атомными диаметрами. В тех случаях, когда элемент в кристаллах образует несколько типов связи, как, например, графит, то его координационное число не является однозначным, поскольку зависящие от типа связи междуатомные расстояния неодинаковы. Однако у типичных металлов характер межатомной связи один и тот же — металлический. Казалось бы, в этом случае координационное число должно быть постоянным. Но и здесь атомный диаметр элемента металла может быть не однозначным, если элемент претерпевает аллотропические превращения, сопровождающиеся изменением кристаллической структуры и, следовательно, координационного числа, а также плотности упаковки ионов.

С увеличением координационного числа у металлов наблюдается рост междуатомных расстояний Чтобы получить возможность сравнивать атомные диаметры элементов, кристаллизующихся в неодинаковых элементарных решетках, их пересчитывают с помощью так называемых переводных коэффициентов на одно и то же координационное число, равное 12.

Кристаллы (зерна) в технических металлах имеют неправильную внешнюю геометрическую форму. Иногда ошибочно полагают, что внутри каждого отдельного зерна сохраняется закономерное расположение ионов и постоянство ориентации кристаллических осей элементарных ячеек. В действительности реальные зерна никогда не представляют собой идеальных кристаллов, и в них всегда наблюдаются несколько дезориентированные блоки ненарушенных областей. Соответственно все реальные кристаллы-зерна — мозаичные образования. Предполагается также, что в кристаллах-зернах существуют ультрамикроскопические внутренние и наружные трещины, откуда и начинается их преждевременное разрушение при относительно незначительной величине приложенного усилия. Этим и объясняется то огромное несоответствие (в 100—1000 раз), которое наблюдается между теоретической и реальной прочностью металлических кристаллов. Заметим также, что вследствие неодинаковой ориентации зерен в поликристаллических агрегатах на границах соприкосновения всегда существуют прослойки сильно искаженного металла.

Из табл. 10 видно, что большинство легирующих элементов имеет кристаллическую структуру, изоморфную одной или другой аллотропической модификации железа. Характерно также, что большинство карбидообразующих элементов обладает кубической объемноцентрированной решеткой. Наоборот, легирующие элементы, присутствующие в стали (в условиях равновесия) исключительно в а-твердом растворе, имеют гранецентрированную кубическую решетку за исключением, однако, кремния.

2. Сплавы железа с легирующими элементами

Все легирующие элементы, кроме бора и азота, имеют близкие к железу атомные размеры и сходственные с ним электрохимические свойства, и потому в сплавах с железом образуют твердые растворы замещения в широком диапазоне концентраций. Бор и азот, а также углерод по сравнению с железом имеют значительно меньшие атомные размеры и в сплавах с ним дают твердые растворы внедрения в узком диапазоне концентраций. В тех случаях, когда содержание элементов превышает пределы их растворимости в твердом состоянии, в сплавах появляются фазы промежуточного характера или образуются механические смеси, что отмечается на диаграммах состояния возникновением гетерогенных областей.

По характеру влияния на аллотропические превращения железа легирующие элементы можно разделить на две группы с двумя подгруппами в каждой. Элементы первой группы и подгруппы понижают точку A3 (у->а) и одновременно повышают

точку A4 (у-б), в результате чего область у-фазы значительно расширяется и, начиная от некоторой концентрации, сплавы при всех температурах, вплоть до расплавления, находятся в состоянии у-твердого раствора (рис. 8, а). Диаграммы такого типа имеют сплавы железа с никелем и марганцем. Элементы второй подгруппы, к которым относятся углерод, азот и медь, также первоначально расширяют область у-фазы, но, так как они имеют ограниченную растворимость в железе, в дальнейшем происходит постепенное сужение области у-фазы и, наконец, полное ее исчезновение (рис. 8,6).

Элементы первой подгруппы второй группы по мере увеличения их содержания в сплаве повышают точку А3 и одновременно понижают точку A4, в результате чего при определенных концентрациях область у-фазы оказывается полностью замкнутой (рис. 9,а).

Оглавление статьи Страницы статьи:  1  2  3  4  5  6  ...  10  11  12  ...  20  21  22 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.03.04   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:52 Трубы пищевая нержавейка 32х4мм

12:43 Проходник ГОСТ 13959-74

12:42 Пробка ГОСТ 13973-74

12:41 Ниппель ГОСТ 13956-74

12:41 Гайка ГОСТ 13958-74

12:40 Гайка накидная ГОСТ 13957-74

12:40 Штифт ГОСТ 24296-93

12:39 Штифт ГОСТ 19119-80

12:38 Штифт ГОСТ 14229-93 пружинный

12:38 Штифт ГОСТ 12850.1 и ГОСТ 12850.2

НОВОСТИ

11 Декабря 2018 17:10
Новогодняя елка из магнитов

12 Декабря 2018 17:06
Американский импорт плоского проката в ноябре упал на 18%

12 Декабря 2018 16:22
”Атомэнергомаш” успешно завершил контракт по РИТМ-200

12 Декабря 2018 15:02
Кот-д'Ивуар за 8 лет нарастит добычу золота в 2 раза

12 Декабря 2018 14:11
АО ”РУСБУРМАШ” реализовало проект ”Готовый полигон” на месторождении Вершинное

12 Декабря 2018 13:45
Индийский выпуск стали в ноябре вырос на 1,7%

НОВЫЕ СТАТЬИ

Ремонт автодорог, особенности восстановления дорожного полотна

Грузоподъемные траверсы: их основные разновидности и назначение

Рулонная и обмазочная гидроизоляция, виды и особенности

Основные разновидности точечных светильников для помещений

Классификация современной строительной арматуры

Основные типы замков для входных дверей

Дома из бруса их преимущества и особенности

Современные зажигалки - виды и применение

Основные аспекты приема на работу иностранных граждан

Модульные здания для строительных площадок

Выкуп грузовых авто

Промышленные химические реагенты для гальваники

Виды складских стеллажных систем

На что обращать внимание при выборе входной двери

Промышленные комплектующие для водоснабжения

Сталь конструкционная углеродистая

Сталь конструкционная низколегированная

Лист нержавеющий AISI 409 - особенности марки и применение

ПАРТНЕРЫ

Рекомендуем приобрести металлопрокат в СПб от компании РДМ.

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2018 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.