Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Черная металлургия -> Фазовые превращения в стали -> Отпуск стали -> Отпуск стали

Отпуск стали

Оглавление статьи Страницы статьи:  1  2  3  4  5  6 

Заключение о природе третьего превращения при отпуске стали можно сделать, сопоставляя обобщенные диаграммы изменения состояния а-фазы (рис. 149) и карбидной фазы (рис. 154). При третьем превращении разрыв когерентности между карбидной и а-фазой приводит к существенным изменениям в строении а-фазы, вследствие пластической деформации, с изменением блоков мозаичной структуры и их укрупнением (температурный рост—кривая D, рис. 149). Структурные изменения в карбидной фазе, связанные со снятием упругих искажений при нарушении когерентности, сопутствуют этим изменениям в а-фазе. Однако к третьему превращению нельзя присовокупить определенную стадию какого-либо карбидного превращения. Поэтому навряд ли справедливо представление об этом превращении, как о карбидном.

Замеченное П. Л. Грузиным, Г. В. Курдюмовым и Р. И. Энтиным соответствие между тепловым эффектом при третьем превращении и количеством углерода в стали объясняется тем, что величина этого эффекта, связанного с изменениями в строении а-фазы, зависит от количества карбидных частиц. Полученная связь не доказывает наличия карбидного превращения.

Представления об определяющей роли снятия напряжений второго рода также вызывают возражения. Как показано на обобщенной диаграмме рис. 149, снятие напряжений второго рода начинается при более низких температурах (порядка 200°) и идет вплоть до 500° и выше. Никакого аномального отклонения на кривой оII при температурах III превращения не наблюдается.

Третье превращение при отпуске закаленной стали происходит в условиях появления диффузионной подвижности металлических атомов (железа и легирующих элементов). Связанные с этим нарушение когерентности, повышение пластичности а-фазы и ее пластическая деформация, возможность перестройки структуры карбидной фазы, освобожденной от упругих связей с металлической матрицей, составляют сумму элементарных процессов, приводящих к наблюдаемым при этом изменениям внутреннего строения и свойств стали. Продолжает оставаться справедливым сделанный ранее вывод о том, что в результате III превращения из мартенсита отпуска образуется феррито-цементитная смесь с зернистой формой карбидной фазы—троостит отпуска.

5. СТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА ОТПУЩЕННОЙ СТАЛИ

Механические свойства закаленной и отпущенной стали определяются свойствами и строением карбидной и ферритной фаз,

изменение которых показано на обобщенных диаграммах рис 149 и 154.

Важная характеристика конструктивных качеств материалов, особенно высокопрочных — сопротивление разрушению под действием нормальных напряжений, сопротивление отрыву. При этом малая величина сопротивления отрыву определяет склонность к хрупкому разрушению и неудовлетворительное поведение деталей при наличии концентраторов напряжений (например, надрезов).

Показано, что сопротивление отрыву не зависит от легированности феррита и определяется главным образом величиной зерна. Как показано на кривой 1 рис. 155, вплоть до температуры отпуска 400°, до тех пор пока структура закаленного феррита остается неизменной, сопротивление отрыву оказывается постоянным. Повышение температуры до 500 и 650° приводит к укрупнению блочной и зернистой структуры легированного феррита, благодаря чему сопротивление отрыву St понижается от 150 до 100 кг/мм2.

Как показано на кривой 2 рис. 155, непосредственно после закалки стали сопротивление отрыву несколько выше St для феррита (175 и 150 кг!мм2, соответственно). Однако повышение температуры отпуска до 200, 300 и 400° приводит к увеличению сопротивления отрыву стали от 175 до 240, 250 и 248 кг/мм2. Это явление связано с наличием углерода в твердом растворе. Наличие углерода в пересыщенном твердом растворе а-железа создает значительные нормальные напряжения в решетке железа, которые снижают величины напряжений от внешних сил, необходимых для осуществления хрупкого разрушения. Повышение температуры отпуска до 400° при условии сохранения постоянно? дисперсности структуры приводит к постепенному уменьшению концентрации углерода в а-растворе (кривая 3, рис. 155). В связи с этим уменьшается нормальная составляющая внутренних напряжений и значительно увеличивается сопротивление отры-

ву (кривая 2). Экспериментально показана обратно пропорциональная связь между сопротивлением отрыву и содержанием углерода в твердом а-растворе.

На этом основан практически найденный режим отпуска до 150—250° инструментальных сталей после закалки. Снижение хрупкости при этом связано с повышением сопротивления отрыву, т. е. сопротивления хрупкому разрушению. Отпуск в районе 300—400° не рекомендуется в связи с развитием явления необратимой отпускной хрупкости.

Повышение температуры выше 400° приводит к уменьшению

дисперсности а-фазы, росту зерна и блоков мозаики феррита (стали) так, как показано на кривой 4 рис. 155. Несмотря на уменьшение концентрации углерода в твердом растворе вплоть до 550°, превалирующим оказывается влияние величины зерна и значение St непрерывно понижается (рис. 155, кривая 2).

Второй важной характеристикой отпущенной стали является сопротивление пластическим деформациям, которое определяется значением твердости. В случае низкотемпературного отпуска (до 200°) твердость закаленной и отпущенной стали не зависит от содержаний в ней углерода и легирующих элементов и определяется главным образом концентрацией углерода в а-растворе (рис. 156). С повышением температуры до 550° и выше содержание углерода в феррите становится практически постоянным и не зависящим от легирования. В то же время твердость изменяется в зависимости от легирования и температуры отпуска от 19 до 41 HRC.

Подобный характер влияния температуры отпуска, содержания углерода и легирующих элементов в стали связан с составом феррита (в смысле уровня легированности) и степенью дисперсности карбидной фазы. Введение легирующих элементов значительно повышает собственную твердость ферритной фазы в примерно такой последовательности: наиболее энергич-

но упрочняют феррит кремний и марганец, несколько слабее хром и, затем, никель и кобальт.

В случае постоянного состава ферритной фазы (углеродистая сталь) твердость однозначно связана с дисперсностью карбидной фазы (показано, в частности, С. 3. Бокштейном

(рис. 157) и Н. Н. Сиротой). Отчетливо видна линейная связь между твердостью и суммарной поверхностью карбидных частиц для углеродистой стали (рис. 157, а). Твердость высокоотпущенной стали Н определяется уравнением:

H = H0 + kS,

где Н0 — параметр, характеризующий твердость ферритной составляющей; S — суммарная поверхность карбида, a k — коэффициент упрочнения стали за счет дисперсности карбидов.

Для среднеуглеродистой стали:

H = 141 + 0,11S.

На рис. 157, б показана зависимость твердости высокоотпущенной стали, легированной хромом, от суммарной поверхности карбидных частиц. При содержании в 2,1 и 3,6% Сr линейная связь отсутствует. Это объясняется тем, что твердость высокоотпущенной легированной стали зависит также от изменения твердости феррита, легированность и твердость которого меняется с течением времени и изменением температуры отпуска. В этом случае Н0 складывается из твердости нелегированного феррита и составляющей, вносимой легированием. Тогда построение в координатах (H стали — Н легированного феррита) и S должно привести к прямолинейному анаморфозу. На рис. 157, в показано, что подобное построение для стали, легированной хромом, (см. рис. 157, б) и кремнием, действительно приводит к получению линейной зависимости.

Хорошо известна однозначная связь между твердостью Н и пределом прочности оb . Поэтому очевидно, что и величина предела прочности определяется теми же причинами, что и твердость высокоотпущенной стали.

Обработка многочисленных опытных данных, относящихся к среднеуглеродистой стали (0,32—0,41% С), легированной хромом, никелем, кобальтом, марганцем, кремнием, молибденом и ванадием, позволила дать связь между пределом прочности оb и истинной прочностью Sк:

SK= 136 + 0,16оb.

Величина предельной пластичности е также связана с пределом прочности

е = 200— 1,25 оb.

Таким образом, используя количественные характеристики дисперсности карбидной фазы и твердости легированного феррита, можно найти количественные связи между основными показателями вязкой прочности и пластичности закаленной высокоотпущенной легированной стали и выяснить физическую природу изменения механических свойств.

Оглавление статьи Страницы статьи:  1  2  3  4  5  6 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.11.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

16:49 Полоса нержавеющая зеркальная 60х6х6000мм AISI 304

16:48 Полоса нержавеющая зеркальная 50х5х6000мм AISI 304

16:47 Полоса нержавеющая зеркальная 30х4х6000мм AISI 304

16:46 Полоса нержавеющая зеркальная 20х4х6000мм AISI 304

16:45 Полоса нержавеющая зеркальная 40х4х6000мм AISI 304

16:34 Уголк нержавеющий г/к равнополочный 50х50х5 AISI 304

16:32 Угол нержавеющий г/к равнополочный 40х40х4 AISI 304

16:31 Угол нержавеющий г/к равнополочный 30х30х3 AISI 304

16:30 Угол нержавеющий г/к равнополочный 25х25х3 AISI 304

16:27 Угол нержавеющий г/к равнополочный 20х20х3 AISI 304

НОВОСТИ

25 Мая 2017 17:31
Тележка для буксировки морского контейнера

24 Мая 2017 15:48
Мост с подогревом за €2 млн. (16 фото)

27 Мая 2017 12:41
ПАО ”Турбоатом” модернизировало оборудование для АЭС Пакш (Венгрия)

27 Мая 2017 12:04
”Высочайший” в этом году планирует запустить новый горно-обогатительный комбинат ”Угахан”

27 Мая 2017 11:20
”ПСМ” поставили ”Транснефти” партию дизель-генераторов

27 Мая 2017 10:14
”РУСАЛ” сообщает о привлечении нового предэкспортного кредита

27 Мая 2017 09:42
На ”КАМАЗе” прошел плановый ремонт оборудования

НОВЫЕ СТАТЬИ

Полы по лагам, тонкости монтажа

Рекламные стенды для выставок и PR-акций

Промышленные вибростолы и другое виброоборудование для про-ва стройматериалов

Распространенные разновидности подъемников

Сыпучие строительные материалы искусственного и естественного происхождения

Металлочерепица и профнастил - металлические кровельные материалы

Автоматические выключатели Easy9

Производство водосточного желоба как идея для предпринимательства

Грохоты промышленные - основные особенности и применение

Утепление ангаров - основные способы

Низкорамные тралы для перевозки крупных грузов

Использование металлоконструкций и бетона в строительстве

Мрамор и гранит в современном интерьере

Электромеханические замки для промышленных помещений

Трубы квадратного сечения из нержавейки

Лист нержавеющий AISI 409 - особенности марки и применение

Характеристики и общие особенности марки стали 40Х13

Свойства и особенности применения проката из нержавейки марки 20Х13

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает трубы ППУ.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.