Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Черная металлургия -> Фазовые превращения в стали -> Отпуск стали -> Отпуск стали

Отпуск стали

Оглавление статьи Страницы статьи:  1  2  3  4  5  6 

Вследствие этого появляются обедненные зоны, окружающие эти частицы, и сохраняются зоны твердого а-раствора с высокой концентрацией углерода (так называемый «двухфазный» распад, экспериментально показанный в работе Г. В. Курдюмова и Н. Л. Ослона).

В работе Кинга и Гловера показано, что энергия активации первого превращения при отпуске находится в следующей зависимости от содержания углерода в мартенсите:

Q ккал/г-атом = 18000 + 8500% (вес.) С.

Величина энергии активации удовлетворительно совпадает с отдельными результатами, полученными в работах и, по-видимому, свидетельствует об определяющей роли диффузии углерода в альфа-железе (мартенсите).

При более высоких температурах отпуска укрупнение карбидных частиц за счет коагуляции приводит к резкому снижению равновесной концентрации углерода в твердом а-растворе. Так, при отпуске высокоуглеродистой стали в твердом а-растворе сохраняется 0,3—0,5%; 0,1% и менее 0,01% С при 150, 300 и 500°, соответственно.

Таким образом, низкотемпературный отпуск приводит к распаду мартенсита закалки (пересыщенного твердого раствора углерода в а-железе) с образованием мартенсита отпуска — гетерогенной смеси из твердого раствора меньшей степени пересыщения с карбидными выделениями1. Следует подчеркнуть, что твердый а-раствор мартенсита отпуска так же, как мартенсита закалки, имеет тетрагональную решетку. Уменьшение концентрации углерода в твердом растворе приводит к наблюдаемому эффекту уменьшения объема.

Скорость распада мартенсита закалки в очень большой степени зависит от температуры отпуска. Так, по данным Г. В. Курдюмова и Л. И. Лысака время полураспада при 0; 20; 40; 60; 80; 100 и 120° равно 340 лет; 6,4 года; 2.5 месяца; 3 суток; 7 час. 50 мин.; 50 и 8 мин., соответственно.

Второе превращение при отпуске (участок cd, рис. 143) связано с образованием мартенсита отпуска из остаточного аустенита, следствием чего является увеличение объема.

Этот процесс наиболее интенсивно протекает в отмеченном интервале температур. В последнее время М. А. Кришталом и С. А. Головиным показано, что распад остаточного аустенита в процессе отпуска растягивается в широком диапазоне температур. Связав пик внутреннего трения при 220—260° с диффузией углерода в остаточном аустените, эти исследователи ус

тановили, что в углеродистой стали (0,92% С) только отпуск на температуры, превышающие 500°, приводит к полному распаду остаточного аустенита. Этот вывод может считаться правильным при условии, если удастся однозначно связать пик внутреннего трения при 220—260° только с процессами в остаточном аустените. В то же время в работе И. Н. Черникова этот эффект связывается с диффузионными процессами в мартенсите.

Третье превращение при отпуске (участок de, рис. 143) связано с образованием феррито-цементитной смеси — структуры троостита отпуска. Природа этого явления будет рассмотрена в разделе 4.

Выше температур третьего превращения в углеродистых сталях происходит процесс коагуляции цементитных частиц с образованием более грубодисперсных зернистых структур сорбита и перлита отпуска. Структурные изменения в процессе коагуляции не относятся к числу превращений, так как при этом строение металлической основы и карбидной фазы оказывается практически неизменным. По этой же причине мы не относим к числу превращений, например, рост зерна аустенита при нагреве стали.

Изменение тонкой структуры а-фазы, состава и строения карбидной фазы, а также сопряженности их рассматривается ниже в разделах 2 и 3.

Введение легирующих элементов приводит не только к количественным, но и к качественным изменениям и появлению превращений нового типа.

Легирование не вносит качественных изменений в механизм первого превращения, т. е. распад мартенсита закалки. Отдельные данные о количественном влиянии легирующих элементов были получены в работе Г. В. Курдюмова, И. В. Исайчева и Э. 3. Каминского. Результаты исследования влияния некоторых элементов содержатся в работе С. 3. Бокштейна. По этим данным введение никеля и марганца не оказывает заметного влияния на содержание углерода в а-растворе, вплоть до 500°. Введение хрома, ванадия и, особенно, кремния приводит к существенному торможению распада мартенсита, особенно выше 200°. Последнее связано с уменьшением диффузионной подвижности атомов углерода в твердом а-растворе. Систематическое изучение хода распада легированного мартенсита при отпуске, проведенное на закаленных монокристаллах, привело к заключению, что титан, ванадий, хром, молибден и вольфрам существенно замедляют протекание второй стадии распада мартенсита. Марганец практически не влияет на этот процесс. Тормозящее влияние некоторых легирующих элементов столь велико, что измеримая величина тетрагональности решетки мартенсита распространяется до 450—500°, в то

время как в углеродистой стали тетрагональность определяется при отпуске не выше 300°.

Величина эффекта II превращения при отпуске связана с количеством остаточного аустенита. Поэтому введение легирующих элементов, увеличивающих количество остаточного аустенита, приводит к повышению объемного эффекта превращения. Легирующие элементы существенно влияют на скорость и степень превращения. Так, в работе В. И. Зюзина, В. Д. Садовского и С. И. Баранчук показано тормозящее влияние добавок хрома. Легирующие элементы, наконец, влияют на положение температурного интервала второго превращения. Хром, марганец и кремний значительно повышают эти температуры. Введение никеля, молибдена, ванадия и меди сказывается меньше, а кобальт практически не оказывает влияния на положение температурного интервала распада остаточного аустенита.

Влияние легирующих элементов на третье превращение при отпуске до настоящего времени не изучено в достаточной степени из-за того, что нет еще единого мнения о природе этого процесса.

Введение в сталь легирующих элементов приводит к появлению качественно новых превращений. Первое из них связано с образованием специальных карбидов и будет подробно рассмотрено в разделе о карбидных превращениях при отпуске. Второе связано с явлением вторичной твердости.

На рис. 145 показано изменение твердости при отпуске закаленной углеродистой (1) и некоторых легированных (2) сталей, которое наблюдается при легировании хромом, молибденом, ванадием и некоторыми другими элементами. По сравнению с непрерывным снижением твердости при повышении температуры отпуска углеродистой стали легированная сталь характеризуется возрастанием твердости после нагрева в районе достаточно высоких (500—600°) температур. Явление вторичной твердости связывают с обеднением при нагреве до этих температур остаточного аустенита углеродом и легирующими элементами, повышением мартенситной точки и превращением в мартенсит при последующем охлаждении до комнатных температур. Существует и другое мнение, что этот распад связан со снятием фа-

зового наклепа остаточного аустенита при нагреве и его превращением при охлаждении. По мнению третьих исследователей, явление вторичной твердости связано с дисперсионным твердением вследствие образования частиц специальных карбидов. В работе М. Д. Перкаса показано, что вторичная твердость после отпуска на 500—600° малоуглеродистых сталей (<0,1% С), легированных ванидем, молибденом и титаном, обусловлена исключительно выпадением дисперсных специальных карбидов при распаде твердого раствора. В то же время вторичная твердость в высоколегированной быстрорежущей стали объясняется наложением на этот процесс (превращение легированного цементита в дисперсные частицы специального карбида) дисперсионного твердения остаточного аустенита с последующим его превращением в мартенсит при охлаждении. Выводы последней работы представляются наиболее вероятными.

Структурные изменения на всех стадиях процесса отпуска стали связаны в той или иной степени с протеканием диффузионных процессов. Поэтому изменение свойств происходит с течением времени в изотермических условиях, однако достигаемый уровень изменения определяется температурой отпуска (см., например, рис. 144). Используя представления о диффузионной природе процесса отпуска, Холломон и Джефи предложили зависимость характеристики изменения твердости Р от абсолютной температуры Т и времени отпуска t

P = T(lt + C),

где С — параметр, величина которого зависит от содержания углерода и условий предварительной обработки. Из этого уравнения следует, что увеличение времени t в определенной степени может компенсировать необходимое повышение температуры Т.

Отпуск применим не только к закаленной стали. Превращения при отпуске наблюдаются также в стали после превращений в промежуточном и перлитном интервале температур. На рис. 146 показано изменение твердости в зависимости от температуры отпуска в стали с 0,94% С для случая предварительной обработки на структуру мартенсита (кривая 1), игольчатого троостита (кривая 2), тонкопластинчатого и грубопластинчатого перлита, (кривые 3 и 4, соответственно). При отпуске мартен-ситной структуры наблюдается непрерывное понижение твердости по мере повышения температуры. Структуры промежуточного типа, характеризующиеся высокой степенью дисперсности карбидной фазы, разупрочняются при немного более низких температурах, чем мартенсит. Структуры перлитного типа начинают разупрочняться, как только их твердость становится равной твердости продуктов отпуска мартенситной структуры. В резуль

Оглавление статьи Страницы статьи:  1  2  3  4  5  6 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.11.02   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:50 Заклепки алюминиевые ударные оптом

12:47 Продаются круги шх15 оптом.

10:48 Купим подшипники разные

08:49 Труба ТФ 89х7 НД-2-2-20 2У1

07:39 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

07:39 Сварочный генератор ГД 2х2503, генератор ГД 4004,

07:39 Дизельные электростанции АД 150

17:51 Металлорежущие станки плазменной и газовой резки

17:50 Проектирование и изготовление пресс-форм

17:11 Пресс-форма по образу или оригиналу изделия

НОВОСТИ

26 Марта 2017 17:32
Снос моста экскаватором с гидромолотом

22 Марта 2017 14:08
Необычные строения из алюминия в Японии (17 фото)

20 Марта 2017 23:31
Станки и оборудование специалисты смогут выбрать на выставке Mashex Siberia

26 Марта 2017 17:23
В Подольске представлен новый электробус КАМАЗ

26 Марта 2017 16:53
Погрузка угля на станции Притомье в Кузбассе в 2017 году вырастет вдвое

26 Марта 2017 15:22
Североамериканский выпуск стали за 2 месяца вырос на 4,3%

26 Марта 2017 14:05
”Polymetal” хочет завершить ГРР на Тереме в 2018 году

26 Марта 2017 13:25
Южноафриканский экспорт железной руды в январе 2017 года вырос на 5%

НОВЫЕ СТАТЬИ

Пищевое оборудование из нержавеющих сталей

Лист нержавеющий холоднокатанный AISI 310S

Нержавеющий холоднокатанный и другие виды листового проката по AISI

Эффективность технологии ультразвуковой очистки поверхностей

Фурнитура и комплектующие для откатных ворот

Конструкция и особенности наиболее применяемых видов силовых трансформаторов

Основные виды натурального камня

Труба из нержавеющей стали: классификация и область применения

Разновидности труб из коррозионностойкой стали и их применение в бытовых и промышленных условиях

Труба нержавеющая 20Х23Н18 для химпрома

Труба нержавеющая в обеспечении комфортной работы предприятий

Купить металлопрокат в Тамбове

Что лучше: купить квартиру с отделкой или без отделки?

Технологии остекления балконов и цены в Киеве

Гравировка на металле: улучшаем офис для успеха в бизнесе

Использование трубы нержавеющей 12Х18Н10Т в машиностроении и других остраслях

Труба нержавеющая 10Х17Н13М2Т в отраслях промышленности

Труба нержавеющая 06ХН28МДТ в котельной промышленности

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2017 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.