Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!
Полезные статьи -> Черная металлургия -> Фазовые превращения в стали -> Мартенсит - образование и превращения -> Часть 10

Мартенсит - образование и превращения (Часть 10)

только в текущем разделе

Страницы:    1  2  3  4  5  6  7  8  9  10  11  12   

дении) и обратного (при нагреве) мартенситного превращения в сплаве железа с 30% Ni был описан и установлено существенное влияние подобного фазового наклепа на механические свойства аустенита.

На рис. 90 показано влияние прямого и обратного мартенситного превращения на положение точки Мн и интенсивность мартенситного превращения в стали с 0,05% С, 8,70% Сг и

13,73% Ni. Мартенситная кривая 1 показывает, что после охлаждения аустенита с 1100° превращение начинается при —10° и интенсивно протекает до температуры жидкого азота (—183°). После двойного у (1100°)-а (—183°) -у(750о) мартенситного превращения получается структура фазовонаклепанного аустенита (температура обратного мартенситного превращения для этой стали равна 720°). При последующем охлаждении мартенсита точка снизилась от —10° до —60°, а степень превращения при охлаждении до —183° резко уменьшилась (кривая 2). Повторный нагрев до 750° привел к получению еще большего наклепа, и степень стабилизации аустенита увеличилась (кривая 3). Предел текучести аустенита после обработки по режимам 1, 2 и 3 при этом (для 20°) увеличился от 22 до 45 и 48 кг/мм2, соответственно.

Аналогичный эффект механической стабилизации после двойного мартенситного превращения (снижение на 30—40°) наблюдался в легированной среднеуглеродистой стали с 0,42—0,46% С.

Последующий нагрев до 900° (выше температуры порога рекристаллизации) привел к значительной дестабилизации аустенита (кривая 4): температура Мн вновь поднялась до начальной (—10°), а интенсивность мартенситного превращения резко возросла. И только новый нагрев до 1100° снял последствия фазового наклепа и привел к практически совпадающей с кривой 1 интенсивности превращения (кривая 5).

Таким образом, увеличение степени фазового наклепа приводит к понижению мартенситной точки и уменьшению интенсивности превращения, т. е. к стабилизации аустенита. Снятие фазового наклепа при последующем нагреве выше температуры по-

рога рекристаллизации приводит к частичному и, при более высоких температурах нагрева, полному снятию эффекта стабилизации аустенита. С точки зрения термодинамико-механической теории механическая стабилизация аустенита связана с блокированием дислокаций (показано повышение предела текучести), а дестабилизация со снятием наклепа и уменьшением блокировки при нагреве.

Термическая стабилизация

Термическая стабилизация аустенита имеет другую природу и происхождение. Это явление впервые было обнаружено М. М. Бигеевым. Термическая стабилизация (и в этом ее принципиальное отличие от механической) развивается в условиях, когда протекание мартенситного превращения исключается, т. е. в структуре, состоящей из смеси аустенита и мартенсита или только аустенита.

Сущность явления термической стабилизации может быть объяснена с помощью схемы рис. 91. Пусть мартенситная кривая для стали изображается линией Ми—Мр. Тогда при охлаждении до комнатной температуры tK степень превращения будет равна Мрк и, в случае дальнейшего непрерывного охлаждения, количество мартенсита увеличится по линии Мрк—Мр. Если при комнатной температуре сделать некоторую выдержку Т1 то при дальнейшем охлаждении превращение не начнется при комнат

ной температуре tK, а сдвинется до ниже лежащей температуры t1. Увеличивая выдержку до t2 и t3, мы можем сдвинуть температуру начала дальнейшего превращения в район более низких температур до t2 и t3 соответственно. Таким образом, увеличений выдержки после частичного превращения приводит к повышению устойчивости аустенита при дальнейшем охлаждении, которое выражается в снижении температуры начала превращения при дальнейшем охлаждении (t1, t2 и t3 вместо tK при непрерывном охлаждении). Термическая стабилизация аустенита приводит также к уменьшению доли образовавшегося мартенсита при температуре окончания мартенситного превращения в данной стали (Мр1, Мр2 и Мр3 вместо Мр, рис. 91).

Термическая стабилизация наблюдается не только в случае выдержек после начала мартенситного превращения, но и выше точки Мн. На рис. 91 показано, что в случае непрерывного охлаждения мартенситное превращение начинается при температуре Мн. Выдержка при t1 > Мн в течение времени t 1 приводит к снижению температуры начала мартенситного превращения до Мн. Увеличение выдержки при Т1 до Т2 и тз приводит к еще большему снижению температуры начала превращения до М"н и Мн". Одновременно с этим количество мартенсита, образовавшегося при температурах окончания превращения, уменьшается от Мр до Мр М"р и Мр, соответственно. Очевидно, что термическая стабилизация выше и ниже Мн приводит к увеличению количества остаточного аустенита.

Существует несколько предположительных объяснений причин термической стабилизации аустенита. Рассматривая стабилизацию в условиях существования аустенито-мартенситной смеси (после выдержек ниже Мн), В. Д. Садовский предположил, что это явление связано с процессом отпуска мартенсита. Это предположение не может объяснить причины термической стабилизации при выдержках выше Мн, когда мартенситная составляющая отсутствует, или в области отрицательных температур, когда отпуск мартенсита практически отсутствует. По предположению А. П. Гуляева, причиной стабилизации является релаксация напряжений, протекающая при изотермической выдержке.

Важной для выяснения действительной природы термической стабилизации аустенита является экспериментально исследованная закономерность влияния температуры на интенсивность процесса стабилизации. В работах П. П. Петросяна и А. П. Гуляева с М. С. Чаадаевой было показано, что с понижением температуры выдержки в мартенситном интервале температур степень стабилизации, т. е. степень понижения температуры во-

зобновления мартенситного превращения при дальнейшем охлаждении, и количество остаточного аустенита увеличиваются. Эти выводы были сделаны на основании опытных данных, полученных после превращения до таких температур, т. е. в структурах с

различым количеством остаточного аустенита, механически стабилизированного тем больше, чем ниже была температура выдержки. Чтобы разделить влияние механической и термической стабилизации, необходимо исследовать влияние температуры при постоянном количестве мартенсита в структуре, т. е. при постоянной величине механического наклепа остаточного аустенита.

Приведенные в этих условиях исследования В. Д. Садовского и Н. В. Штишевской и далее Коэна показали, что степень термической стабилизации увеличивается с повышением температуры, т. е. обратно тому, что показано А. П. Гуляевым и М. С. Чаадаевой и П. П. Петросяном в условиях, когда оба эффекта не были разделены. Дальнейшие исследования привели к выводу, что повышение температуры и увеличение времени изотермической выдержки в районе выше Мн также приводит к увеличению степени термической стабилизации. На рис. 92 показано изменение положения мартенситной точки Мн в зависимости от температуры изотермической выдержки выше Мн = —10° разной продолжительности (0; 1 и 12 час.). В этих условиях опыта наложение механической стабилизации на термическую исключено. Как следует из рис. 92, повышение темпе-

Страницы:    1  2  3  4  5  6  7  8  9  10  11  12   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

Статьи

Диффузионные процессы в стали
Аустенит - образование и превращения
Перлитное превращение
Мартенсит - образование и превращения
Бейнит - образование и превращения (игольчато-троститное)
Превращения переохлажденного аустенита
Отпуск стали
Прокаливаемость стали
Расчет процессов термообработки

НОВЫЕ ОБЪЯВЛЕНИЯ

Т 07:24 Дизельгенераторы С32 , 800кВт Б/у

Т 07:24 Дизельные электростанции АД 150

Т 07:24 Сварочные агрегаты АДД 2х2502, АДД 2х2502 П, АДД 2х2502 ПВГ

Т 07:24 Сварочный генератор ГД 2х2503, генератор ГД 4004,

Т 07:23 Сварочные агрегаты адд 4004, адд 4004 вг и др

Ч 06:29 Лист ст 10Г2ФБЮ от 45000р/тн

Ч 06:29 Лист 15ХСНД от 40000р/тн

Ч 06:29 Лист 17Г1С 31500р/тн

Ч 06:29 Лист ст 09Г2С от37500р/тн.

Ц 16:14 Прецизионный сплав – Лента марки 80НХС

Ч 16:14 Лента, прецизионный сплав, марки 47НД

Ц 16:14 Лента нержавеющая марки 12Х18Н10Т, ГОСТ 9940-81

НОВОСТИ

27 Сентября 2016 14:19
115-летний вуппертальский монорельс (20 фото, 1 видео)

26 Сентября 2016 17:48
Змееподобный робот для подводного контроля

28 Сентября 2016 10:08
АО ”Уралхиммаш” отгрузило 17 единиц оборудования для Чаяндинского НГКМ

28 Сентября 2016 09:41
”ЧМК” заявил об оптимизации производства

28 Сентября 2016 08:02
Новые кондиционеры на кузнечном заводе ”КАМАЗа”

28 Сентября 2016 07:29
”Северсталь” поставит около 1 тыс. тонн специальных судосталей на АО ”ПО ”Севмаш”

27 Сентября 2016 17:16
Артель ”Прибрежная” добыла 55 кг золота

НОВЫЕ СТАТЬИ

Арматура для отопительных радиаторов - основные разовидности

Турбокомпрессоры в автомашинах и спецтехнике

Общие основы использования горячекатанного нержавеющего квадрата в производстве

Квадратный прокат из нержавеющий стали - виды и применение

Круг горячекатаный в разных отраслях промышленности

Классификация кругов и прутков нержавеющих

Нержавеющая стальная проволока - общие сведения

Основные виды сварочной проволоки из нержавейки

Обзор автокранов и их назначение

Строительство и борьба с грунтом

Международное право в области иммиграции

Как применяются резервуары в различных отраслях промышленности

Проволока сварочная Св-06Х19Н9Т для сварки легированных сталей

Сетка нержавеющая сварная - виды и особенности

Проволока нержавеющая сварочная и её применение в промышленности

Прием металлолома в Москве

Болты - технология, свойства, применение

Разновидности систем кондиционирования, технические и эксплуатационные характеристики

Какая бывает керамическая плитка для полов

Как изготавливают трубопроводные отводы

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Открыт новый раздел: Прайс-листы в файлах! (Excel и др.), доступен упрощенный просмотр прайсов без скачивания!

Компания "РДМ" предлагает металлопрокат.

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2014 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.