Центральный металлический портал РФлучшие сервисы для Вашего бизнеса

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Полезные статьи -> Черная металлургия -> Фазовые превращения в стали -> Аустенит - образование и превращения -> Аустенит - образование и превращения

Аустенит - образование и превращения

Оглавление статьи Страницы статьи:  1  2  3  4  5  6 

ках необходимо укрупнить зерно, что достигается применением повышенных температур нагрева для «наследственной» мелкозернистой стали. Последующая термическая обработка придает стали вновь мелкозернистую структуру, необходимую для получения хороших механических свойств.

Большой практический и теоретический интерес представляет обнаруженная В. Д. Садовским, К. А. Малышевым и Б. Г. Сазоновым и исследованная В. И. Архаровым и Ю. Д. Козмановым перекристаллизация аустенита, обусловленная внутренним наклепом. Наличие крупных исходных зерен аустенита приводит, вследствие ориентированности у-а-превращения, к получению внутризеренной текстуры образовавшихся кристаллитов а-фазы. В изломе текстурованные в пределах исходного зерна аустенита кристаллиты производят впечатление единого зерна, приводя к получению в перегретой стали так называемого «нафталинистого» излома. Нагрев такой стали выше Ас1 и Ас3 и последующая повторная закалка приводят к измельчению размера действительного зерна аустенита, но «нафталинистый» излом при этом сохраняется. Это объясняется строгой кристаллографической ориентировкой измельченных зерен аустенита в пределах исходного крупного зерна, что приводит к получению внутризеренной текстуры при последующем охлаждении.

Для разрушения внутризеренной текстуры необходим перегрев на 200° над критической температурой образования аустенита (до 990° для стали ХГ). После закалки с этих температур получается мелкокристаллический излом, что свидетельствует об устранении прежней внутризеренной текстуры. Причиной этого является процесс рекристаллизации, протекающий в связи с наклепом зерен аустенита, который получается в процессе их образования из перлита (скорость нагрева 100° С/сек). Дальнейший рост зерен аустенита протекает только при нагреве до более высоких температур (1030—1150°).

Таким образом, размер зерна аустенита в ряде случаев обусловливается не только протеканием фазового превращения, но и последующей рекристаллизацией, вызванной наклепом за счет объемных изменений в процессе превращения при нагреве.

Анализируя литературные данные и результаты собственных исследований, В. Д. Садовский, К. А. Малышев и Б. Г. Сазонов пришли к выводу, что точка b Чернова является температурой действительной рекристаллизации стали и изменения «физической структуры» в отличие от точки A3, при которой происходит изменение «химической структуры». Этим, в частности, объясняется необходимость применения для исправления перегретой структуры крупнозернистой стали двойного отжига, двойной нормализации и т. д.

6. ТЕМПЕРАТУРНЫЕ РЕЖИМЫ ПОЛУЧЕНИЯ АУСТЕНИТА В УСЛОВИЯХ ОБЫЧНОГО И СКОРОСТНОГО НАГРЕВА

В условиях подачи тепла от внешнего нагревателя (например, в печи), нагрев происходит достаточно долго для того, чтобы завершились фазовые превращения с соответствующими концентрационными и структурными изменениями. В связи с опасностью перегрева в практических случаях зона нагрева для получения аустенита располагается в интервале Ас1, Aс3+ + (20—60)°.

Скоростной нагрев с применением токов высокой частоты вносит принципиальные изменения в назначение температурного режима. Кратковременность пребывания в зоне надкритических температур не позволяет пройти до конца диффузионным процессам, обеспечивающим получение однородного аустенита. Так, получение однородного аустенита в стали У8 при обычном нагреве происходит при 750—760°. Нагрев со скоростью 100— 120° С/сек приводит к растворению при 760° всего 0,35% С. Нагрев до 840 и 880° приводит к повышению концентрации до 0,52 и 0,64%, соответственно. И только начиная с 925° углерод полностью растворяется в аустените. Таким образом, увеличение скорости от примерно 4° С/сек (при печном нагреве) до 100—120° С/сек при скоростном нагреве т. в. ч. приводит к повышению температурной зоны, обеспечивающей полное растворение углерода в аустените, от 760 до 925°.

Одновременно с концентрационными происходят изменения зернистой и внутризеренной структуры аустенита. Эти процессы носят также диффузионный характер, т. е. существенно зависят от времени. Благодаря этому, нагрев до весьма высоких температур, недопустимый при обычных методах в связи с укрупнением зерна и ухудшением механических характеристик стали, оказывается вполне допустимым при нагреве т. в. ч.

Общий характер изменения твердости в зависимости от температуры нагрева при разных скоростях показан на рис. 28. Повышение температуры при каждой данной скорости нагрева приводит вначале к повышению твердости после закалки за счет увеличения концентрации углерода в мартенсите (аустените). Начиная с некоторых температур, дальнейший нагрев приводит к понижению твердости после закалки за счет укрупнения зерна аустенита и получению взамен мелкокристаллического крупноигольчатого мартенсита. Чем выше скорость нагрева, тем при более высоких температурах заканчивается растворение углерода и начинается укрупнение структуры. В связи с этим максимумы твердости на кривых передвигаются к более высоким температурам, как это показано на рис. 28.

Скоростной нагрев приводит в определенных условиях к по

лучению более высокой твердости после закалки по сравнению с обычным нагревом. Уровень твердости после закалки с обычного нагрева показан линией Нп на рис. 28. В интервале t1 — t"1 t2—t"2 и tз—t"з для скоростей нагрева v1, v2 и v3 соответственно, твердость оказывается большей для случая скоростного нагрева. Так, твердость стали 40 достигает 58 HRC вместо 54 —

55 HRC при обычной закалке; а стали 50 значения 62 HRC вместо 57—58 HRC- стали 40Х — 63,5 HRC вместо 57—59 HRC. При определенном составе стали увеличение скорости нагрева до заданной температуры закалки приводит к непрерывному, но затухающему росту твердости. Для стали 40 увеличение скорости нагрева повышает твердость следующим образом:

Исследования, проведенные на хромистом и никелевом феррите, показали, что увеличение скорости нагрева способствует получению измельченных блоков мозаичной структуры, с чем однозначно связано повышение твердости при закалке после скоростного нагрева. В этом, по-видимому, заключается природа «сверхтвердости» после закалки т. в. ч.

На основании систематических исследований твердости, подобных показанным на рис. 28, сопоставленных с изучением

структуры, можно построить диаграммы для назначения рациональных режимов нагрева т. в. ч. На рис. 29 приведена такая диаграмма для стали 35. Нижняя и верхняя линии этой диаграммы показывают температурный интервал допустимых режимов нагрева, в котором структура и твердость не уступают получаемым после закалки с обычного нагрева (>48HRC). Ниже нижней линии получаются структуры недогрева и неполной закалки, выше верхней — структуры перегрева. В тонко заштрихованной зоне диаграммы твердость превышает 50 HRC. Это — зона преимущественных режимов.

Как следует из рассмотрения рис. 29, увеличение скорости нагрева приводит к значительному смещению верхних температурных границ зон преимущественных и допустимых нагревов при относительно слабом смещении нижних температурных границ. В качестве характеристики скорости по предложению И. Н. Кидина принята величина скорости нагрева выше температуры точки Кюри. Первая попытка построения подобных диаграмм была предпринята М. Г. Лозинским; однако при этом была предложена недостаточно объективная характеристика — время нагрева.

Оглавление статьи Страницы статьи:  1  2  3  4  5  6 

Автор: Администрация   Общая оценка статьи:    Опубликовано: 2011.11.01   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ЛИЧНЫЙ КАБИНЕТ:



запомнить  Регистрация

Металлоторговля:
Объявления
Прайсы (по торг. позициям)
Прайсы (в файлах)

Марки металлов
Калькулятор веса металла

Новости

НОВЫЕ ОБЪЯВЛЕНИЯ

12:52 Трубы пищевая нержавейка 32х4мм

12:43 Проходник ГОСТ 13959-74

12:42 Пробка ГОСТ 13973-74

12:41 Ниппель ГОСТ 13956-74

12:41 Гайка ГОСТ 13958-74

12:40 Гайка накидная ГОСТ 13957-74

12:40 Штифт ГОСТ 24296-93

12:39 Штифт ГОСТ 19119-80

12:38 Штифт ГОСТ 14229-93 пружинный

12:38 Штифт ГОСТ 12850.1 и ГОСТ 12850.2

НОВОСТИ

11 Декабря 2018 17:10
Новогодняя елка из магнитов

12 Декабря 2018 17:06
Американский импорт плоского проката в ноябре упал на 18%

12 Декабря 2018 16:22
”Атомэнергомаш” успешно завершил контракт по РИТМ-200

12 Декабря 2018 15:02
Кот-д'Ивуар за 8 лет нарастит добычу золота в 2 раза

12 Декабря 2018 14:11
АО ”РУСБУРМАШ” реализовало проект ”Готовый полигон” на месторождении Вершинное

12 Декабря 2018 13:45
Индийский выпуск стали в ноябре вырос на 1,7%

НОВЫЕ СТАТЬИ

Ремонт автодорог, особенности восстановления дорожного полотна

Грузоподъемные траверсы: их основные разновидности и назначение

Рулонная и обмазочная гидроизоляция, виды и особенности

Основные разновидности точечных светильников для помещений

Классификация современной строительной арматуры

Основные типы замков для входных дверей

Дома из бруса их преимущества и особенности

Современные зажигалки - виды и применение

Основные аспекты приема на работу иностранных граждан

Модульные здания для строительных площадок

Выкуп грузовых авто

Промышленные химические реагенты для гальваники

Виды складских стеллажных систем

На что обращать внимание при выборе входной двери

Промышленные комплектующие для водоснабжения

Сталь конструкционная углеродистая

Сталь конструкционная низколегированная

Лист нержавеющий AISI 409 - особенности марки и применение

ПАРТНЕРЫ

Рекомендуем приобрести металлопрокат в СПб от компании РДМ.

 ГЛАВНАЯ   МЕТАЛЛОТОРГОВЛЯ   ОБЪЯВЛЕНИЯ   ПРАЙСЫ   КОМПАНИИ   СТАТЬИ   РАБОТА   ФОРУМ   ГОСТы   МАРОЧНИК   КАЛЬКУЛЯТОР   БИРЖЕВЫЕ ЦЕНЫ   ВЫСТАВКИ  

Рейтинг@Mail.ru

О портале : Информация и правила : Реклама : Тарифы для компаний : Наши контакты : Связаться : Личный кабинет : Регистрация

2009-2018 © Любое копирование материалов без активной ссылки на metallicheckiy-portal.ru запрещено!
Использование материалов в печатных изданиях только с разрешения администрации портала.